

Environment and Climate Change Canada Environnement et Changement climatique Canada

Measurements of Methane Emissions from Canadian Bakken Shale Oil Fields and Oil Sands Surface Mining Facilities

Stewart G. Cober

Atmospheric Science and Technology Directorate Science and Technology Branch

Environment and Climate Change Canada

Acknowledgements

- Senior researchers who have led this work
 - Dr. Shao-Meng Li ECCC
 - Dr. Ralf Staebler ECCC
 - Dr. John Liggio ECCC
 - Professor Robert McLaren York University
 - Dr. S. Baray York University
 - Katherine Hayden ECCC
 - Doug Worthy ECCC
 - Dr. Mengistu Wolde National Research Council of Canada

Page 2 – May-1-18

Environment and Climate Change Canada

Aim

• To demonstrate the utility of two top-down emissions estimation methods and provide examples of their application to oil sands surface mining and Canadian Bakken shale oil field facilities.

Page 3 – May-1-18

Environment and Climate Change Canada

Oil Sands Facilities Measured for Pollutant Emissions

Atmos. Meas. Tech., 8, 3745–3765, 2015 www.atmos-meas-tech.net/8/3745/2015/ doi:10.5194/amt-8-3745-2015 © Author(s) 2015. CC Attribution 3.0 License.

Determining air pollutant emission rates based on mass balance using airbornemeasurement data over the Alberta oil sands operationsGordon et al. (2015)

 Top-down Emission Rate Retrieval Algorithm (TERRA)

 $E = E_L + E_{fL} + E_T + E_{fT} + E_d + E_c - E_m$

 Change in mass

Emission Rate Lateral Turb. Flux Transport Turb. Flux Deposition Chemistry to Surface

E

 E_{T}

 E_{fl}

Aircraft and instruments - 2013 study

Gases, 1-5 sec

- •CRDS: CO, CO₂, H₂S, CH₄
- •PTR-ToF-MS: VOCs
- Canisters: VOCs
- •TECO: NO/NO₂/NOy/O₃/SO₂
- •QCL: NH₃, HCHO
- •CIMS: Acids

Particles, 1-10 sec

- AMS: composition
- •SP2: rBC
- •CPC, UHSAS, PCASP
- •FSSP300: counts and size

Meteorological and other state parameters

- •3-D wind spd/dir, T, P, RH
- Position (long, lat, alt)
- Turbulence

Environment and Climate Change Canada

CH₄ mixing ratio distributions for a flight around the Syncrude Mildred Lake facility

CH₄ emission rates of **OS** surface mining facilities determined from the aircraft flights

Baray, S., A. Darlington, M. Gordon, K.L. Hayden, Amy Leithead, S.-M. Li, P.S.K.
Liu, R.L. Mittermeier, J. O'Brien, R. Staebler, M. Wolde, D. Worthy, S.G. Moussa, R.
McLaren, Quantification of Methane Sources in the Athabasca Oil Sands Region of Alberta by Aircraft Mass-Balance, Atmos. Chem. Phys.
https://doi.org/10.5194/acp-2017-925, 2017.

Comparison of measurements to estimates in Canada's Greenhouse Gas Reporting Program

Results - CH₄ emissions from oil sands facilities

- Total measured CH₄ emission rates from 5 surface mining facilities is 19.2±1.1 tonnes CH₄ hr⁻¹
- Tailings ponds accounted for 45% of CH₄ emissions, while mine faces contributed 50%
- The measured hourly CH₄ emission rate from all facilities in the AOSR is 48±8% higher than the hourly rate for 2013 extracted from the Canadian Green House Gas Reporting Program (converted from annual rate)

Baray, S., A. Darlington, M. Gordon, **K.L. Hayden**, Amy Leithead, S.-M. Li, P.S.K. Liu, R.L. Mittermeier, J. O'Brien, R. Staebler, M. Wolde, D. Worthy, S.G. Moussa, **R. McLaren**, Quantification of Methane Sources in the Athabasca Oil Sands Region of Alberta by Aircraft Mass-Balance, **Atmos. Chem. Phys., https://doi.org/10.5194/acp-2017-925, 2017.**

Mobile lab measurements - Saskatchewan 2015

- CH₄, CO₂, CO, CH₄/CO₂ carbon isotope
- NO, NO₂, SO₂, H_2S
- VOCs in canisters (~150 VOCs)
- OVOCs + BTEX
- Acids (organic and inorganic)
- Black carbon, PM_{2.5} and particle number size distribution
- Met parameters (T, P, RH, 3-d wind speeds, wind direction, turbulence)

CH₄ emissions mapping in the Bakken region

Environment and Climate Change Canada

Changement climatique Canada

Emissions quantified using 2 methods: 1. Known tracer release (at 41 accessible sites)

Transect distance

Environment and Climate Change Canada

Tracer release experiment results

2. Gaussian dispersion (664 sites)

For sites that were not accessible, a Gaussian dispersion model was used to relate the observed peak concentration (ΔCH_4) to the emission rate This model was verified with data from the N₂O release sites and tested against a more sophisticated Lagrangian stochastic dispersion model

Dispersion method emission results

- Scaling to a regional level gives a CH4 emissions estimate of 49 t/hr
- Compare to reported energy production sector emissions for the province of 54 t/hr
- Given that the south-east region produces less than half of the province's oil, the inventory emission estimates are likely too low

Environnement et Changement climatique Canada

Canada

Conclusions

• In-situ measurements can be used to support emission estimation reporting

- Aircraft measurement approach provides a useful method to estimate integrated emissions over a large facility (i.e., oil sands surface mining) and over regions with large numbers of dispersed facilities (e.g., oil fields)
- Mobile lab measurement approach has the potential to provide site-based emission factors for upscaling to regional scales
- Comparison suggests that measured CH₄ emissions from oil sands surface mining facilities are higher than reported values by about 50%
- For the Bakken shale oil region
 - A significant fraction of oil wells have detectable CH_4 emissions
 - Regional emissions are dominated by a relatively small number of large emitters (such as wells or tanks)
 - Consistent with other studies, the mobile lab-based measurements show that emission estimates based on atmospheric observations are higher than bottomup / reported emission estimates

Page 18 - May-1-18

