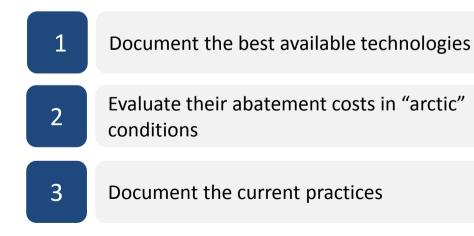


Best Practices to reduce Methane emissions from Arctic Oil and Gas Production

Stephanie Saunier 14 Mars 2013

Carbon Limits?



Context and overview of the study presented

CONTEXT

O&G operations in the Arctic are material and expected to increase	<i>O&G represent 20% of the global anthropogenic methane emissions</i> EPA, 2011
The BC snow/ice radiative forcing is larger for the Arctic Council nations than for the Rest of the World.	The significance of BC emissions from gas flaring remains highly uncertain, but is a source of potential concern in the High Arctic.
AMAP, 2011	Arctic Council, , 2011

KEY OBJECTIVES OF THE STUDY

Project financed by:

MINISTRY OF THE ENVIRONMENT

AGENDA

Methodology

Methane emissions sources

Gas Flaring

AGENDA

Methodology

Methane emissions sources

Gas Flaring

Project's methodology and approach

WORKPLAN

> 50 INTERVIEWS PERFORMED

BC and Methane emission sources

Where, when, what type of emissions?

WELLS GAS PRODUCTION STORAGE/LOADING **OIL PRODUCTION** TRANSPORT **BLACK CARBON Vessels and ships** • Drilling operations Power/Heat • Gas flaring Vessels and ships generation • Land and air Well tests • Land and air Associated Gas transport transport Flaring **Completion/ testing** Associated Gas Compressors Storage tanks/ • • ٠ METHANE **Dehydrator and** • Well plugging and Flaring • loading abandonment Associated Gas pumps • Sea transport • Gas venting and Venting **Pneumatic devices** • • Fluid degasing Fugitive leakages flaring • • Well tests Casinghead gas Well blowdown • • venting Well completion •

< PRODUCTION >

< EXPLORATION >

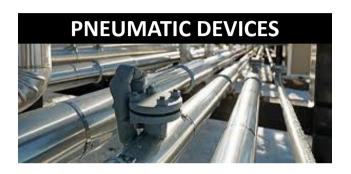
- KEY
- Applicable both onshore and offshore
- Applicable offshore only
- Applicable only onshore

Methodology

Methane emissions sources

Gas Flaring

Key sources of potential methane emissions



STORAGE AND LOADING

COMPRESSORS

Components can develop leaks due to normal wear, process variations and environmental conditions

Emission Source	Technology /practice	Maturity	Offshore? Onshore?	Applicable Exploration development?	Emission reduction
Fugitive emissions	Directed Inspection and Maintenance	Н	вотн	YES	60%-80%
	Subsea leakages detection & repair	М	OFF	NA	Uncertain

Compressors can leak through the components ensuring the sealing of the compressed gas

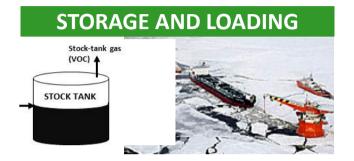
COMPRESSORS

Emission Source	Technology /practice	Maturity	Offshore? Onshore?	Applicable Exploration development?	Emission reduction
Centrifugal compressor	Dry seal	н	вотн	- YES	94%
	Seal Oil Vapor Recovery System	Н	вотн		95%
Reciprocating compressors	Economical replacement of rod packing	н	DOTU	YES	50%-65%
	Collecting and using/flaring the vent	М	BOTH		95%

Glycol re-generation and gas-driven pumps related to flow Carbon Limits

Emission Source	Technology /practice	Maturity	Offshore? Onshore?	Applicable Exploration development?	Emission reduction
Glycol dehydration and flow assurance	Install Flash Tank Separator (FTS) & Optimize glycol circulation rates	High	вотн	NA	90%
	Use electric pump				80%
	Reroute Glycol Skimmer Gas			NA	95%

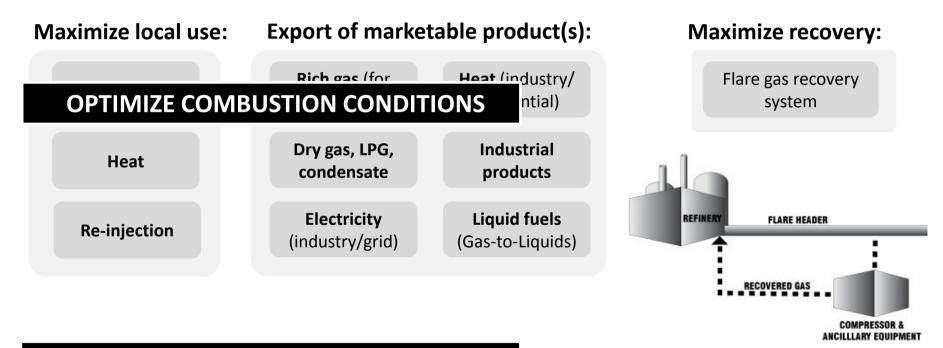
Remote, non-electrified sites often use gas-driven pneumatic devices emitting CH₄ for automatic process control



Emission Source	Technology /practice	Maturity	Offshore? Onshore?	Applicable Exploration development?	Emission reduction
Pneumatic devices	Replacement to low bleed devices	Н	вотн	NA	90%
	Retrofit into low bleed				90%
	Replacement to air driven instrument				100%

Methane and nmVOCs are released from hydrocarbon products during storage and loading

Emission Source	Technology /practice	Maturity	Offshore? Onshore?	Applicable Exploration development?	Emission reduction
Storage and loading of hydrocarbon products	Reduce operating pressure upstream	н	вотн	NA	Up to 30%
	Increase tank pressure	L-M			10-20%
	Change geometry of loading pipes	Μ			Poor data
	VRU: Gas compression	Н			95%
	VRU: Ejector	Н			. 050/
	VRU: VOC condensation & gas recovery	M-H			>95%

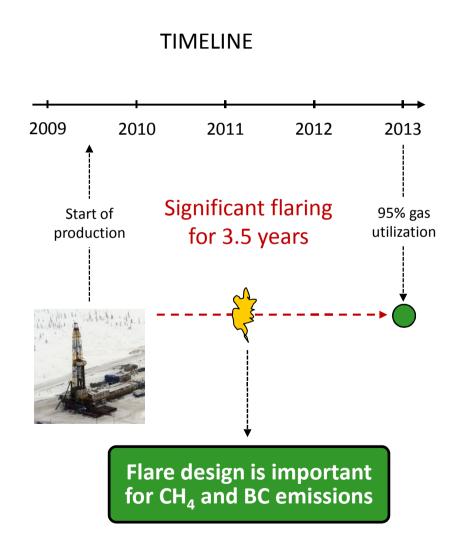

Methodology

Methane emissions sources

Gas Flaring

CH₄ emissions can be controlled through increased CL gas utilization and use of appropriate flare design ^{Carbon Limits}

INVEST IN GAS INFRASTRUCTURE

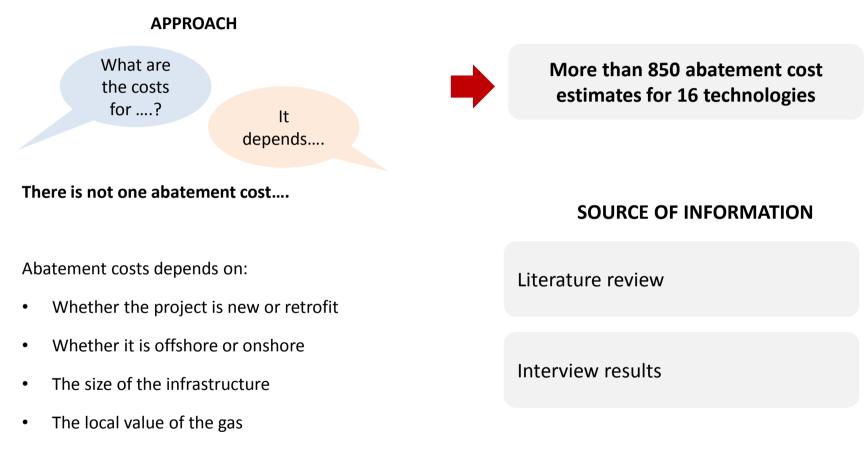

OPTIMIZE COMBUSTION CONDITIONS

Gas investments often lags behind oil investments, Carbon Limits

EXAMPLE: Vankorskoye

- Largest field in Russia last 25 years
- Flaring of 1.1 BCM in 2010 (sattelite data)
- Gas pipeline under construction
- Estimated 95% utilization by 2013

AGENDA


Methodology

Methane emissions sources

Gas Flaring

Approach and Methodology

- The emissions factors of the emission source
- The share of methane in the recovered gas....

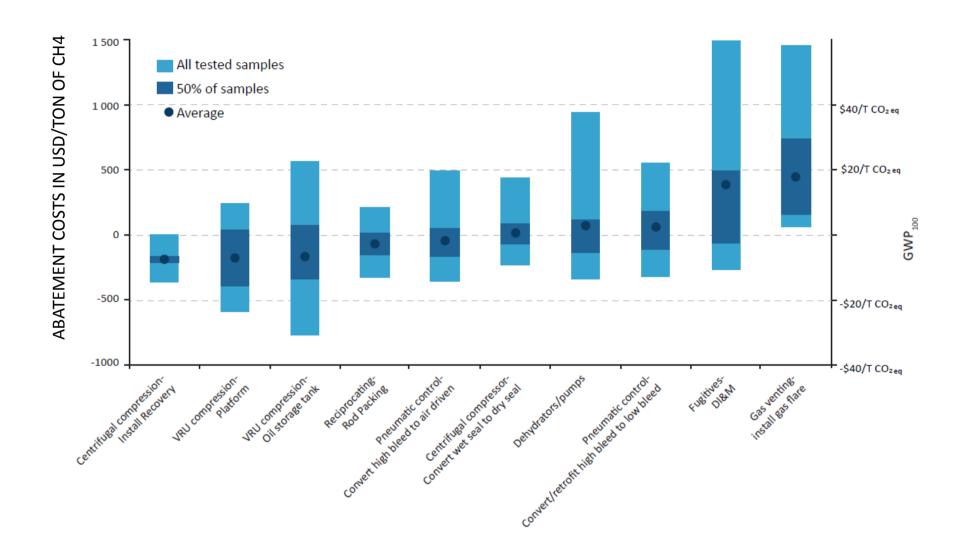
Factors influencing abatement costs in the Arctic Carbon Limits

Factors Influencing Costs

Generally, equipment/material costs are similar

But differences in

- Installation costs
- Transport and freight costs
- Labour costs
- Design and engineering costs


Factor Influencing Revenue

Local gas (or other products) value

Methane abatement Costs

There are a number of barriers to projects implementation

DATA/INFORMATION GAPS

ECONOMIC BARRIERS

PRACTICAL BARRIERS

POLICY UNCERTAINTIES

GAS UTILISATION BARRIERS

CONCLUSIONS

- Most technologies can be applied in the Arctic without technical barriers
- Some of the best practices are commonly applied in Norway, North America, and in some cases, in Russia
- Key challenges remain for **smaller**, **old or dispersed sites**
- Abatement costs vary **significantly between cases**
- Higher installation and operational costs in the Arctic coupled with low value of gas (e.g. where gas is re-injected or flared) represents a barrier

Stephanie Saunier

Carbon Limits AS <u>Stephanie.saunier@carbonlimits.no</u> +47 913 84 611