

Designing a Carbon Project - Good Engineering vs. Good Carbon Engineering

Introduction

Oconstruction engineers are trained to:

- Deliver practical solutions
- Comply with specific engineering codes
- Execute build to recognized industry standards
- Use plant and equipment fit for intended purpose
- Maintain workmanship standards
- Comply with HSE regulations
- Adhere to agreed timeline and budget

• \rightarrow GOOD VALUE ENGINEERING

Introduction

OThe problem in the carbon world:

- Engineers are merely used to construct others' decisions
- Importance of including the engineers from early stage is not well understood
- \rightarrow Leaving major decisions to non-engineers:
 - "Carbon experts"
 - -Traders
 - -Bankers, accountants, lawyers, etc.

Introduction

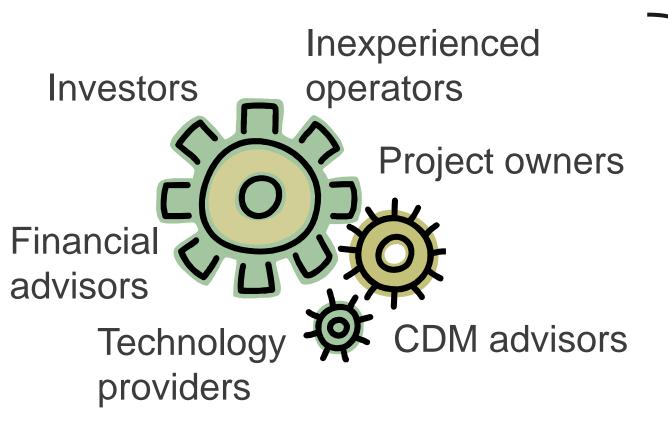
OThe problem in the carbon world:

- \rightarrow Leaving major decisions to non-engineers:
 - -Early decisions require:
 - Understanding of project's mechanics
 - Knowledge and experience to be able to assess:
 - »Environmental impacts
 - »Social harm
 - (2 outputs of poorly engineered works)

Good Engineering Decisions

- Ability to impact quality of everyday lives
 - -Example:
 - Economic, environmental, social upside of remediating air and water polluting dumpsites
 - Bonus of "green" electricity

Engineering and Carbon: the story so far


- Project underperformance
 - -Construction delays
 - -Poor modeling of emission reductions
 - -Inadequate monitoring equipment
 - -Others...
 - → Main reason: developers ignore benefits of early engineer involvement

Engineering and Carbon: the story so far

Carbon projects = collection of "moving parts" CDM example:

Engineering and Carbon: the solution

- Many aspects of carbon project cycle lie outside developer's influence
- →Minimize risk through aspects within control
 - Paying attention to engineering parts at:
 - 1. Due diligence
 - 2. Works execution
 - 3. Operational performance
 - − \rightarrow VALUE ENGINERING

Engineering and Carbon: the solution

- Value engineering:
 - -Quality oriented
 - -Strict due diligence and execution
 - -Target economically sound projects
 - \rightarrow Maximize group's experience and stakeholder's value
 - Ensure best applicable standards
 - Maximize cost-benefit relationship
 - Employ proper technology
 - Design proper carbon-coupled monitoring system

1. Project idea assessment

- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Initial project idea review
 - Proposed technology
 - Feasibility
 - Capability of generating benefits
 - Economics test
 - Potential risks

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Search supplier database
- Don't expect one turn-key supplier
- Contact candidates
- Receive expressions of interest

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Detailed document
 - Guide for suppliers
 - Include all needed tools
 - Project requirements
 - Carbon methodology guidance
 - Site-based information
 - Site visit questionnaire
 - Supplier response templates

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Invite pre-qualified suppliers
- Encourage questions
- Record all data
- Measure and collect information requested

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. <u>Questions & answers</u>
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Period for submission of additional questions
- Engineering team addresses questions
- Compilation of Q&A document
- Distribution to all participants

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Allow time for preparation of proposals
- Proposals should include:
 - Technology
 - Reference projects
 - Detailed CAPEX/OPEX library
 - Suggested approach
 - Timeline

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Detailed evaluation of submissions
- Request clarifications / corrections
- Target: identify 2-3 finalists
- Criteria:
 - Technology efficiency
 - Cost effectiveness
 - Relevant experience
- Ensure monitoring equipment compatibility with carbon methodology

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Dig deep into budget
- Target: good technical solution without over-paying

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

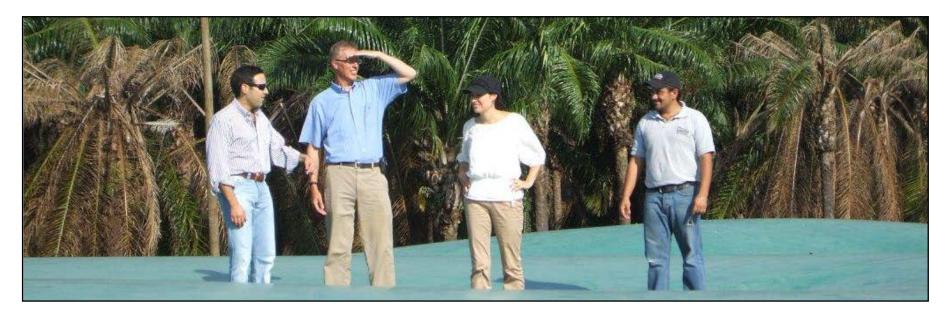
- Present final offers to project proponent
- Advice on your best choice
- Allow project proponent to:
 - Take final decision
 - Contact winner

- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision

10. Project management

11. Project operation

- Get involved in project execution
- Make sure delivery dates are met
- Ensure contract terms are respected
- Support proponent in supervision
 - Industry standards
 - Build performance
 - HSE regulations


- 1. Project idea assessment
- 2. Call for interest
- 3. Enquiry document
- 4. Site walkover
- 5. Questions & answers
- 6. Proposal submission
- 7. Proposal evaluation
- 8. Value engineering
- 9. Final decision
- 10. Project management
- 11. Project operation

- Visit periodically
- Communicate with operators to ensure proper:
 - Operation
 - Data collection and storage

Conclusion

- Sound engineering in carbon projects is critical
 - Ensures well-managed carbon process
 - Minimizes under-performance risks
- Engineers need to get involved from early stage

