# Advanced Mobile Technologies for the Identification, Attribution, Quantification, and Visualization of Fugitive Methane Emissions from Natural Gas Production



Chris Rella, Ph. D. Picarro Research Fellow Picarro, Inc., Santa Clara, CA

Methane Expo 2013, Vancouver, BC 13 March 2013

rella@picarro.com

# What Is Picarro?

- High-Performance mobile gas and isotope analysis based on Cavity Ringdown Spectroscopy
- Advanced Meteorology & Geospatial Awareness
- Sophisticated Scientific Algorithms

 Cloud-based Computing and Visualization

 15+ Ph.D. Physicists, Chemists, and Environmental Scientists collaborating with dozens of world-class research institutions













# Make Sure You Burn All of It!



100 year: Methane "breaks even" at 6.9% atmospheric loss

## Make Sure You Burn All of It!



20 year: Methane "breaks even" at 2.2% atmospheric loss

# Why Are Measurements Vital?

- Methane emissions are "fugitive" emissions i.e., unintentional emissions
  - Leaks from a pipe or fitting
  - gas that is released episodically during production, transport, or consumption



Emissions factors and methane inventories are not accurate at estimating unintentional emissions!

Climatic Change (2011) 106:679-690 DOI 10.1007/s10584-011-0061-5

LETTER

#### Methane and the greenhouse-gas footprint of natural gas from shale formations

A letter

Robert W. Howarth · Renee Santoro · Anthony Ingraffea



**Table 2** Fugitive methane emissions associated with development of natural gas from conventional
 wells and from shale formations (expressed as the percentage of methane produced over the lifecycle of a well)

|                                                       | Conventional gas | Shale gas   |
|-------------------------------------------------------|------------------|-------------|
| Emissions during well completion                      | 0.01%            | 1.9%        |
| Routine venting and equipment leaks at well site      | 0.3 to 1.9%      | 0.3 to 1.9% |
| Emissions during liquid unloading                     | 0 to 0.26%       | 0 to 0.26%  |
| Emissions during gas processing                       | 0 to 0.19%       | 0 to 0.19%  |
| Emissions during transport, storage, and distribution | 1.4 to 3.6%      | 1.4 to 3.6% |
| Total emissions                                       | 1.7 to 6.0%      | 3.6 to 7.9% |
| 5                                                     | PTU              |             |

5

# "Houston, We Have a Problem"

• 490,000 wells in the U.S.



- 1000's of potential leaks / well pad

• 2.5 million miles of (ageing) natural gas pipeline



Source: Energy Administration, Office of Oil & Natural Gas Division, Gas Transportation Information System

How do you assess 1,000,000,000 potential leaks without spending **\$1,000,000,000**?

### Our Solution: Drive, and Let the Atmosphere Carry The Methane to You!

- TRIAGE: figure out where the leaks are (and aren't) at a distance, without stopping the car
- LOCALIZE: if you see a leak, use the wind to understand where the source of the gas is
- ATTRIBUTE: don't get confused by the cows!

 QUANTIFY: concentration means (almost) nothing – the only thing that matters is emission rate







| Awareness     |  |  |  |  |
|---------------|--|--|--|--|
| While Driving |  |  |  |  |
|               |  |  |  |  |

Wind Field









Concentrations 3-5X above background levels over 100's of square miles ... all from natural gas extraction!

Lots and lots of individual emission sources

# Example: Compressor Station in the Denver – Julesburg Basin



# 45 Second Drive Around Compressor Station Detects Multiple Methane Plumes



# Same Data, Shown on Real-Time Surveyor User Interface



Google 1 50 m

"Bubbles" indicate signatures of methane emission sources via automated plume height and width algorithms

### PICARRO

Map Satellite

Map Contro 0.05 D

# Maps Show Many Possible Sources

#### P))CUBED

cess\* Picarro Demo User, Picarro Google

#### Picarro Surveyor™ for Natural Gas Leaks

#### Surveyor: FDDS2008



@ 2011 - 2012 Picano Inc.



# Leak Source Indicators >> Indicate Plume Origin



Process Picano Demo User, Picano Google

#### Picarro Surveyor™ for Natural Gas Leaks

#### Surveyor: FDDS2008



© 2011 - 2012 Picarto Inc.



Wind direction (and standard deviation) determines possible wind angles, with car motion removed

# Field of View 💣 Indicates Area Measured

#### P))CUBED

Process\* Picarro Demo User, Picarro Google

#### Picarro Surveyor<sup>™</sup> for Natural Gas Leaks

#### Surveyor: FDDS2008



@ 2011 - 2012 Picano Inc.



Field of view calculated for small leak and narrow plumes – larger leaks can be detected at greater distances

### PICARRO

Map Satellite

Map Control

# **Source Attribution Using Stable Isotope Analysis**

Drive-by isotope analysis with Air Core (thanks Pieter Tans & NOAA team)!



# **Isotope Ratio Analysis in 10 Minutes**

#### PCUBED

Process - Eric Crosson, Picarro Manufacturing

#### Picarro Surveyor™ for Natural Gas Leaks



We know where the leak is, and that it is from O&G activities. But, how do we QUANTIFY the emission rate? ΔRRO

## **Measuring Emissions Rate: A 1 liter / second leak**

| 1 meter     | 10 meter | 100 meter | 1000 meter |     |
|-------------|----------|-----------|------------|-----|
| 10,000+ ppm | 200 ppm  | 20 ppm    | 0.5 ppm    |     |
| <b>K</b>    |          |           | PICARE     | R 0 |

# **Three Ways To Measure the Emission Rate**

- Direct Measurement of the emissions
  - requires physical access to the leak
- Measurement at a distance + Atmospheric Modeling
  - Use downwind measurements + atmospheric measurements + atmospheric models to back calculate emission rates
  - Requires knowledge of distance to source, height of source, and atmospheric turbulence
- Direct Measurement of plume through a downwind surface
  - Measure downwind concentration map and wind speed only
  - No knowledge of distance, source location, and atmospheric turbulence required

PICARRC

# Quantify emissions using direct plume measurements

- Counting molecules passing through an area
  - Measure CH<sub>4</sub> concentration on a spatial grid downwind of the source
  - Measure wind through the surface

$$Q(t) = \int_{A} k(C(y, z, t) - C_0) \overline{u(x, y, t)} \cdot \hat{n} \, dA$$



# **Quantify emission using plume measurements**

• Drive through plume while measuring methane concentrations from four elevations (4 pixels) and simultaneously measuring vehicle position and speed, and wind velocity.



PICARRO

Use a virtual net to 'catch' the methane molecules

### **Measuring Emissions Rates in Real Time**



### Final Reconstruction of 2D Plume Picture Measurement Time = ~ 5 minutes



| CH4 Plume Observed 1 Feb 2013 12:21 |                     |  |  |
|-------------------------------------|---------------------|--|--|
| Car Speed                           | 10.8 m/s            |  |  |
| Lateral Wind Speed                  | 2.5 m/s             |  |  |
| Flux Estimate                       | 1.5 L/s (± 0.3 L/s) |  |  |



# **Compressor Station Findings**

Average Leak was 3.5 L/s (± 1.4 L/s):

• 3.5 balloons in 1 second!



• The carbon footprint of ~100 citizens









Uintah Basin, Utah