

Reducing Methane Emissions through Directed Inspection and Maintenance (DI&M)

Oil & Gas Subcommittee Technology Transfer Workshop

January 28, 2009 Monterrey, Mexico

Directed Inspection and Maintenance and Infrared Leak Detection Agenda

- What are fugitive equipment leaks?
- What is DI&M
- Infrared Leak Detection
- Partner Experience
- Discussion

Key Characteristics of Fugitive Equipment Leaks

- Fugitive equipment leaks are a major source of CH₄ emissions at oil and gas facilities.
- Most of these emissions are from a few big leaks rather than many small or medium sized leaks.
- 75 to 85% of the emissions from leaks are cost effective to fix (often payback of <6 months).
- Components in gas service leak more than those in liquid service.
- Components in sweet service more likely to leak than those in sour or odorized service.
- Leak potential tends to increase with time and usage.
- Different types of components and service applications have different leak potentials (i.e., leak magnitude and probability).
- Components in vibration, cryogenic or thermal cycling service have an increased leak potential.

Why Do Big Leaks Occur?

 Big leaks often go unnoticed because they occur in difficult-to-access, lowtraffic, congested or noisy areas, or the amount of leakage is not fully appreciated.

 Big leaks may also occur because of severe/demanding applications or the high cost or difficulty of repairs.

Methane Emissions at 76 Gas Production Facilities

Source: Clearstone Engineering

Distribution of Losses by Type of Component (Processing)

Measured Leakages in Compressor Stations

Source: Clearstone Engineering, 2002

What is Normal Leak Control Practice?

- Perform a leak check (using a bubble test or hand-held gas sensor) on equipment components when first installed, and after inspection & maintenance.
- Thereafter, leaks are detected by:
 - Area or building monitors.
 - Personal monitors.
 - Olfactory, audible or visual indicators.
- Leaks only fixed if this is easy to do or they pose an obvious safety concern.
- Unmanned facilities get less attention than manned facilities.
- Priority following a facility turnaround is to get it back on line rather than ensure all affected components have been leak checked.

What is Directed Inspection & Maintenance (DI&M)?

It is a practicable ongoing approach to achieving significant cost-effective reductions in fugitive equipment leaks:

- Find the big leaks in an efficient manner:
 - Focus efforts on the most likely sources of big leaks with coarse or less frequent screening of other components.
- Only repair components that are cost-effective to repair or pose a safety or environmental concern.
- Minimize the potential for big leaks and provide early detection and repair of these when they occur.

What are the benefits of DI&M?

- Attractive payback (often <6 months).
- Reduced maintenance costs.
- Reduced downtime.
- Improved process efficiency.
- Safer work environment.
- Cleaner environment.
- Resource conservation.

Where Should Leak Monitoring **Efforts Be Focused?**

Table 1. Sample leak statistics for gas transmission facilities.							
Source	Number of Sources	Leak Frequency	Average Emissions (lb/h/source)	Percent of Component Population	Contribution to Total Emissions (%)	Relative Leak Potential	
Station or Pressurized Blowdown System	219	59.8	7.50E+00	0.131	53.170	7,616.00	
Compressor Seal – Centrifugal	103	64.1	2.79E+00	0.061	9.313	2,838.00	
Compressor Seal – Reciprocating	167	40.1	2.35E+00	0.099	12.722	2,400.00	
Pressure Relief Valve	612	31.2	3.56E-01	0.366	7.058	362.00	
Open-Ended Line	928	58.1	2.02E-01	0.555	6.065	205.00	
Orifice Meter	185	22.7	1.07E-01	0.110	0.640	109.00	
Control Valve	782	9.0	3.63E-02	0.467	0.918	37.00	
Pressure Regulator	816	7.0	1.75E-02	0.488	0.461	18.00	
Valve	17,029	2.8	9.09E-03	10.190	5.007	9.00	
Connector	145,829	0.9	9.83E-04	87.263	4.641	1.00	
Other Flow Meter	443	1.8	2.19E-05	0.265	0.0003	0.02	

2.19E-05

1.8

Source: Clearstone Engineering, 2007

0.02

How Frequently Should Components Be Monitored?

Suggested leak monitoring frequencies for equipment components,						
presented by component category and type.						
Source	Type of	Service	Application	Frequency		
Category	Component					
Process Equipment	Connectors and	All		Immediately after		
	Covers			any adjustments		
				and once every 5		
				years thereafter		
		All	Thermal Cycling	Bi-annually		
		All	Vibration	Annually		
	Control Valves	Gas/Vapour/LPG		Annually		
		Gas/Vapour/LPG	Thermal Cycling	Bi-annually		
	Block Valves –	Gas/Vapour/LPG	All	Annually		
	Rising Stem					
	Block Valves –	Gas/Vapour/LPG	All	Once every 5		
	Quarter Turn			years		
	Compressor Seals	All	All	Monthly		
	Pump Seals	All	All	Quarterly		
	Pressure Relief	All	All	Annually		
	Valves					
	Open-ended Lines	All	All	Annually		
	Emergency Vent	All	All	Quarterly		
	and Blowdown					
	Systems ¹					
Vapour Collection	Tank Hatches	All	All	Monthly		
Systems	Pressure-Vacuum	All	All	Monthly		
	Safety Valves					

12

Screening - find the leaks

- Soap bubble screening
- Electronic screening ("sniffer")
- Toxic vapor analyzer (TVA)
- Organic vapor analyzer (OVA)
- Ultrasound leak detection
- Acoustic leak detection
- Infrared leak detection

- Evaluate the leaks detected measure results
 - High volume sampler
 - End-of-pipe technologies
 - Velocity traverse
 - Rotameters
 - Calibrated bagging
 - Toxic vapor analyzer (correlation factors)

Leak Measurement Using High Volume Sampler

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectiveness	Approximate Capital Cost		
Soap Solution	**	\$		
Electronic Gas Detector	*	\$\$		
Acoustic Detector/ Ultrasound Detector	**	\$\$\$		
TVA (Flame Ionization Detector)	*	\$\$\$		
Calibrated Bagging	*	\$\$		
High Volume Sampler	***	\$\$\$		
End-of-pipe Flow Measurement	**	\$\$		
Infrared Leak Detection	***	\$\$\$\$		
Source: EPA's Lessons Learned	•			

^{* -} Least effective at screening/measurement

^{\$ -} Smallest capital cost

^{*** -} Most effective at screening/measurement

^{\$\$\$ -} Largest capital cost

Estimating Comprehensive Leak Survey Costs

- Cost of complete screening survey using high volume sampler (processing plant)
 - Ranges US\$15,000 to US\$20,000 per medium-size plant
 - Rule of Thumb: US\$1 per component for an average processing plant
 - Cost per component for remote production sites would be higher than US\$1
- 25 to 40% cost reduction for follow-up survey
 - Focus on higher probability leak sources (e.g. compressors)

DI&M by Infrared Leak Detection

Real-time detection of methane leaks

- Quicker identification of leaks.
- Screen hundreds of components an hour.
- Screen inaccessible areas
 simply by viewing them.

Infrared Leak Detection

Source: Leak Surveys Inc.

Source: Heath Consultants

Infrared Methane Leak Detection

Video recording of fugitive leaks detected by various infrared devices

Is Recovery Profitable?

Repair the Cost-Effective Components						
Component	Value of lost gas¹ (US\$)	Estimated repair cost (US\$)	Payback (months)			
Plug Valve: Valve Body	21,070	200	0.11			
Union: Fuel Gas Line	20,260	100	0.06			
Threaded Connection	17,410	10	0.01			
Distance Piece: Rod Packing	12,750	2,000	1.88			
Open-Ended Line	11,600	60	0.06			
Compressor Seals	9,640	2,000	2.49			
Gate Valve	7,880	60	0.09			

Source: Hydrocarbon Processing, May 2002 (Repair cost)

1 – Adjusted to US\$5/MMBtu gas price

DI&M - Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- Open-ended lines, compressor seals, blowdown valves, engine-starters, and pressure relief valves represent <3% of components but >60% of methane emissions
- The business of leak detection has changed dramatically with new technology

Source: Chevron

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits