

Eni experience and research with IR video-camera imaging

Patrizia Buttini CR MR Monterotondo Tuesday, 19th of may

Eni S.p.A. Division Refining & Marketing Research Centre of Monterotondo

iEni

Agenda

Flaring, Venting and GHG emissions visualization

Experimental Activity in Eni sites– Off shore Platform On shore applications (Oil Centre, Gas Plant)

Results and Discussion

Perspective for research

Introduction –GHG emissions

ENI is involved in some projects related to GHG (methane) reductions from industrial sources:

- Flaring / Venting
- Diffuse emissions (tanks and pipelines)
- Fugitive emissions

Evidence of reduced quantities can be obtained by Conventional methods (FID) and Optical system (FT-IR Remote Sensing to measure point source emissions without sampling ports chimneys, stacks and flares) but they are time consuming and expensive

>Detection of losses of methane/VOC is of great interest for the oil, gas, chemical and power industry

Infrared spectral imaging systems may be used for

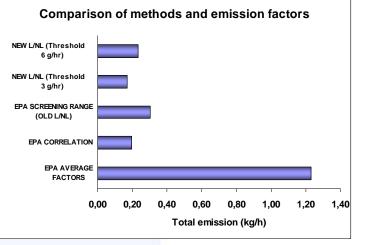
- Fugitive gas leak imaging
- Stack emission monitoring
- Flare analysis
- Safety and risk mitigation applications
- Greenhouse gas emission quantification

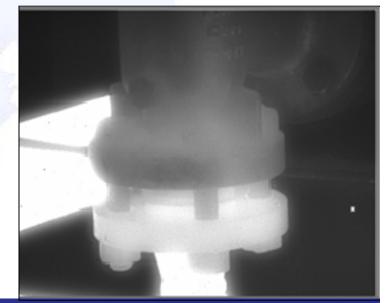
Facilities

- RefineriesProcessing plants
- >Offshore oil platform
- Tankers
- LNG terminals
- ➢ Pipelines
- Transmission lines
- Gas compression facilities
- Chemical plants
- Power processing plants

Driving force for video imaging

- A safer environment
- Reduction of emissions
- Minimization of product loss
- Inspection of all the sources
- Emission quantification according to the EPA alternative rule
- Less exposure of operators
- Responsible stake holder
- Emission's trading amongst multiple plants
- Kyoto treaty

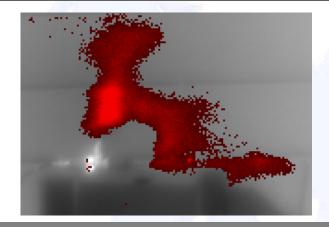



Eni experience: Fugitive gas leaks

Previous field activities demonstrated that the videocamera Sherlock can detect losses > 6 g/hr and quantifies big leaks

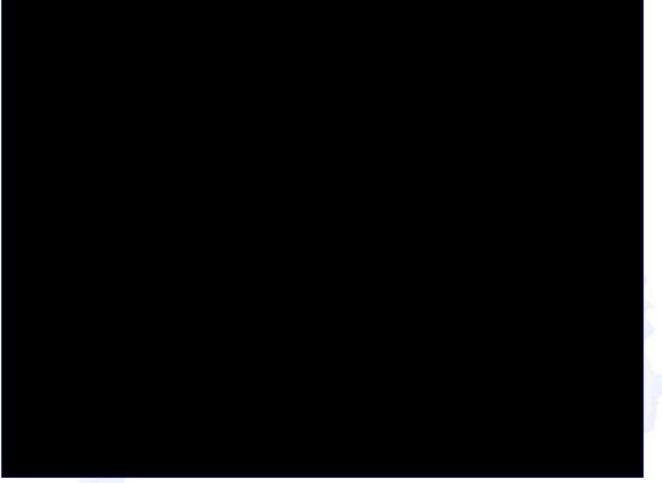
Smart LDAR can be conducted more efficently than with FID

>Official standard for application of video cameras gives same results as reference Epa method 21 correlation equation



Quantitative analysis by videoimaging

• The Sherlock imaging spectrometer quantifies the concentration of the gas as well as mass flow rate using a standard Beers Law

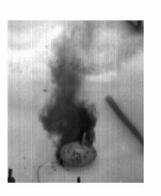


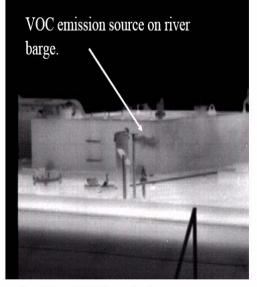
Shown above is an Ethane leak where the gas is colored red with the higher concentration shown in the brighter red. The concentration of any pixel within the gas cloud is shown on the right

Leak Analysis Control Panel	×
Check1 Gas Type	
Check2 Ethane	
Check3	
Threshhold 151	
Volume 1	
Max 308k ppm 151,120	

From helicopter over two Off Shore Platforms

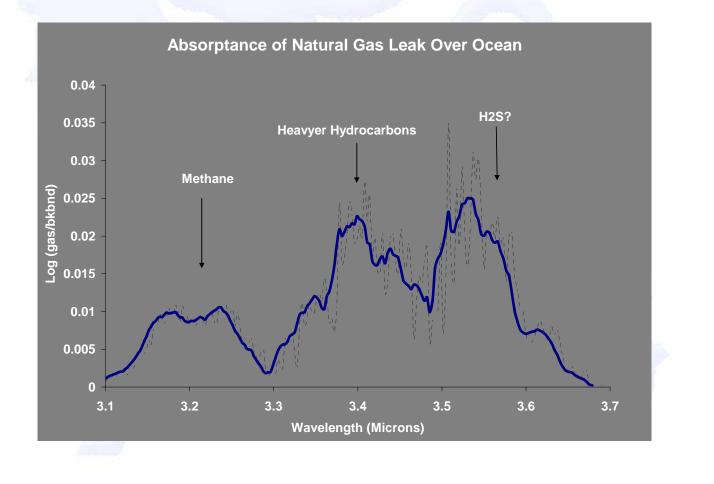
>Data from PAT (it is not an ENI


Successful Airborne Test are also possible


Pipe leaks

Gas Leak Detection

Thermal video showing VOC emission from a valve on a floating roof storage tank.


fugitive VOC emission sources

>Tank testing

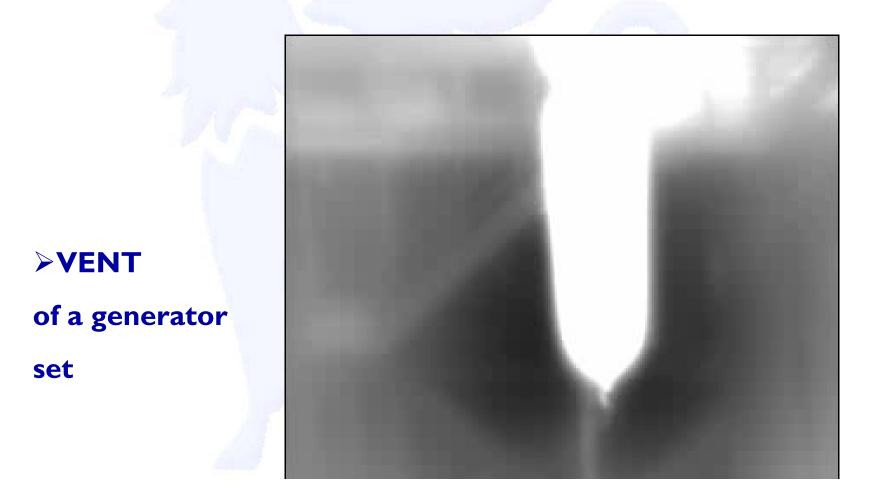
Data from PAT

Of f Shore Oil Platform Natural Gas Venting

Eni experience off shore

>No vents are visible

≻Hot spot

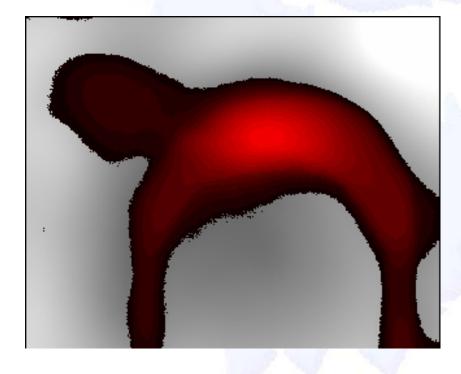

Eni experience off shore

>Off shore platform: DETAILS

In situ survey

On site gas plant: Tank Inspection

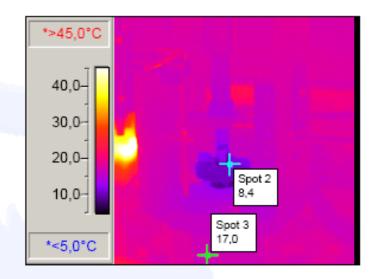
Gas plant : Search of losses



On shore Gas facility: vent

Data processing

scan_063.pat - Gas Detection 🛛 🔀				
[Gas Characteristics			
	Absorption Gas Type			
	C Emission Methane			
	Baseline Pixel Value: 7844 0 Kelvin			
	Gas Detect 48 - + Threshhold 48			
[Max Concentration:			
	1532.59k ppm-v (208,067)			


Losses from valves? Neighbouring plant

>Eni experience Thermal infrared camera

≻The valve is colder>∆T 8 °C

Conclusions IR imaging techniques

 \geq Video imaging can be used to quantify vents and CH₄ losses and to give evidence of reduction actions

>can be used to detect losses in not accessible source

>can successfully be used to detect pollutant emissions from flaring and vents

Can be used to prioritize maintainance work (tank inspections, LDAR)

It also monitors temperatures that can be used for identifying and trending hot and cold spots for early maintenance planning.

>Other specific pollutants can be quantified

Can be used in a corporate approach

Research perspective

- Protocol for Operative guidelines needs to be developed
- Scouting of other IR techniques (f.e. Raman) can be proposed
- International patners are invoked for a JIP
- Gas imaging is possible for H₂S and methane
- Suitable experimental field monitoring applications for qualitative purposes should be programmed

Aknowledgements

 The experimental activities have been conducted by ing. L. Gelpi, V. Vittori in a research project funded by R&D Eni Div R&M Centre of Monterotondo.

