Energy Benchmarking

WHAT WE HAVE LEARNED

Al Wakelin

Sensor Environmental

It is a Valuable Tool

However, it must be adapted to this Industry

Adaptations

Clusters

Sour gas, Sweet Gas, Conventional Oil, Heavy Oil Fuel Gas Intensity Critical Unit Operations

Environment

Canada

Sweet Gas Average

Sweet Gas Plants and Field

Sulphur Recovery Plant

Environment Environnement Canada Canada

Features

 Establish Baseline Performance
 Gauging Impact of Changes
 Compare Current Practice with Best Practices

Amine Plant Optimization Models

Ben Spooner

Amine Experts Inc.

Optimization Model Purpose

Energy audits revealed root cause of high energy usage in amine plants was from over circulation ("common thread")

More amine being sent to absorber than theoretically needed based on inlet H₂S and CO₂ content

Tool developed to help determine:

□ If circulation rate can be reduced

□ If not – why not?

Possible engineering study

Cost of *not* reducing circulation rate

1 MW = 2.25 $e^{3}m^{3}/day$ fuel gas = 4.7 t CO₂/day

Environment Environnement Canada Canada

Amine Optimization Models

- result of GPSA calculations and simulation (ProTreat and HYSYS) results
- \Box circulation rate = K(Gy/x)

K = multiplication coefficient

- G = total gas flow
- y = total acid gas % (mol% H_2S + mol% CO_2)
- x = amine concentration (wt %)

□ reboiler duty:

X% amine = K_x (amine circulation rate)

CIRCULATION RATE DIRECTLY AFFECTS REBOILER DUTY

DEA Operating Model

Environment Environnement Canada Canada

Model Predictions

- circulation rate will sweeten gas to below spec of 4 ppm H₂S and 2% CO₂
- □ corrosion mitigation
 - DEA rich loading of 0.45 0.55 (depending on partial pressures)
 - rich loading of 0.45 for MDEA
- □ reflux ratios:
 - **DEA 1.5**
 - **MDEA 1.25**
- □ equivalent to overhead temperature of 100°C

Assumed Parameters

contactor sized according to inlet gas volume & pressure

□ regeneration tower sized according to amine circulation rate

Simulation Parameters

□ inlet gas temperature

□ inlet gas pressure: >2070 kPa / 300 psi

lean amine temperature

□ rich amine temperature (into regen tower)

□ reflux temperature

□ reflux pressure

Canada

Impact of Inefficiencies

difference between the model predictions and actual plant conditions is:

impact of inefficiencies or mechanical problems in the plant

20% DEA, 10% acid gas, 3200 10³m³/d

Environnement Environment Canada

Canada

20% DEA, 10% acid gas, 3250 10³m³/d

Environnement

Canada

Environment

Canada

PETROLEUM TECHNOLOG ALLIANCE CANADA

PTAC

Methane to Markets

Impact of Inefficiencies

- over-circulating amine can have the following negative effects...
 increased:
 - heat duty in all aerial coolers and reboiler
 - pump duty
 - wear and tear on all equipment and piping (causing corrosion and equipment failure)
 - filter changes
 - hydrocarbon absorption
 - CO₂ pickup in MDEA systems

Model Verification

taken onsite to various DEA & MDEA facilities

very encouraging results

any deviations from the graph were explainable

□ generally, reboiler duty was correct for given circulation rate

Environment

Canada

MDEA Operating Model

Circulation Rate

MDEA Operating Model Reboiler Heat Medium Flow

Current Performance vs. Recommended

Summary

- makes operators life EASIER
- model prediction represents optimum operating point
- optimum KPI
- □ average plant over circulates by 20%:
 - 200 amine reboilers x 10 MW x 20% reduction
 - = 400 MW
 - 400 MW = 900 e³m³/d fuel gas = \$181 912 /d (based on 38.5 GJ/e³m³) = \$66.4 million/yr
 - = 1 890 t CO₂/day = 690 M t/yr

Rod Leland RCL Environment Group Glycol Dehydrator Optimization

CETAC-WEST

nent Environnement Canada

Glycol Dehydrator Optimization

Outline

Glycol Dehydrator Operations Overview
 Energy Consumption
 EUB Environmental Emissions Standards

 Result in energy consumption reduction

 Operations Optimization, Emissions Reduction and Reduced Energy Consumption

Environment

Glycol Dehydration Schematic

Glycol Dehydrator Optimization

Natural Gas Used in:

□ Glycol Pumps

Chemical Pumps

Reboiler Burner

Reboiler (as Stripping Gas)

Flares and Incinerators

Often Used in Pumps Instead of Electricity

Glycol Dehydrator Optimization

Glycol circulation rate:

□ Often easily changed

Often too high

□ Directly impacts:

Benzene Emissions

CO₂ Emissions

Energy Consumption

Canada

New Emission Regulations Drive Energy Conservation

EUB Directive 39's New Requirements:

Lower Dehydrator Benzene Emission Limits

Site Emission Limits

Posting of Dehydrator Optimization Graph (DEOS)

Annual Review of Operations of Every Dehydrator

Environment

DEOS Chart

 Circulation Rate Reduction:
 Benzene Emissions are reduced by 50%
 by applying a 50%
 Circulation Rate Reduction

DEOS Chart

Circulation Rate Reduction:

- Benzene Emissions are reduced by 50% by applying a 50% Circulation Rate Reduction
- Dry Gas H₂O Content
 Increased by 10%

Fuel Gas Reduction

Reducing Glycol Circulation Reduces Fuel Gas Use

Glycol Dehydrator Optimization

Dehydrator Statistics (2004)

2802 Oil and Gas Dehydrators in Alberta O&G Sector (82% of Canada's)

Dehydrator Installation Types (~78% are all gas-driven)

- Wellsites 44%
- Compressors 34%
- Gas Plants 16%
- Batteries 6%

Remote Sites - Significant Optimization Opportunity

Glycol Dehydrator Optimization

Considerations:

Optimization usually requires no capital expenditure

Often Significant Energy Use Reductions

□ Annual Review Required → Continuous Improvement

Improved Environment = Improved Economy

Environment

Methane to Markets

Methane Savings from Dehydrators and Compressors

Energy Management Workshop for Upstream and Midstream Operations

January 17, 2006

Agenda

- Dehydrators
 - Glycol Circulation Rate
 - Flash Tank Separators
- Compressors
 - Reciprocating Compressors
 - Centrifugal Compressors
- Discussion Topics
- Contact Information

Methane to Markets

Dehydrators: What is the Problem?

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - Dehydration systems in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane and other hydrocarbons from reboiler vent
 - Methane from pneumatic controllers
 - On average, 275 cubic feet (cf) of methane emissions per million cf of gas processed1

Source: www.prideofthehill.com

1 Methane Emissions from the Natural Gas Industry, Volume 14: Glycol Dehydrators, USEPA, June 1996.

Solution: Optimizing Glycol Circulation Rate

- Gas pressure and flow at gathering/booster stations vary over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - Methane emissions are directly proportional to circulation
 - Operators have found circulation rates two to three times higher than necessary
- Gas STAR Lessons Learned has calculations to optimize circulation rates, save gas

Solution: Installing Flash Tank Separator (FTS)

- Flashed methane can be captured using a FTS
- Many units are not using a FTS (see bar chart)
- Recovers about 90% of methane emissions
- Reduces volatile organic compounds by 10 to 90%
- Must have an outlet for low pressure gas
 - Fuel
 - Compressor suction
 - Vapor recovery unit

Economics of Flash Tanks

- Capital and installation costs:
 - Capital costs range from \$6,750 to \$13,500 per flash tank
 - Installation costs range from \$3,300 to \$5,900 per flash tank
- Negligible operational & maintenance costs

Methane Savings: Dehydrators

Two Options for Minimizing Glycol Dehydrator Emissions

Option	Capital Costs	Annual Operational & Maintenance Costs	Emissions Savings	Payback Period ¹
Optimize Circulation Rate	Negligible	Negligible	130 to 13,133 Mcf/year	Immediate
Install Flash Tank	\$6,500 to \$18,800	Negligible	236 to 7,098 Mcf/year	4 to 11 months

1 Gas price of \$7/Mcf

Industry Experience

- One operator routes gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit
- Texaco (now Chevron) installed FTS
 - Recovers 98% of methane from the glycol
 - Reduced emissions from 1,232 1,706 Mcf/year to less than 47 Mcf/year

Agenda

- Dehydrators
 - Glycol Circulation Rate
 - Flash Tank Separators
- Compressors
 - Reciprocating Compressors
 - Centrifugal Compressors
- Discussion Topics
- Contact Information

Reciprocating Compressors: What is the Problem?

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cf/hour
 - Worn packing has been reported to leak up to 900 cf/hour

Reciprocating Compressors: What is the Problem?

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket; between packing cups; around the rings; and between rings and shaft

Methane Savings Through Economic Rod Packing Replacement

Assess costs of replacements

Methane to Markets

- A set of rings: \$675 to \$1,100 (with cups and case) \$2,100 to \$3,400
 Rods: \$2,500 to \$13,500
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs
- Assess the potential savings
 - Monitor and record baseline packing leakage (usually on new packing) and piston rod wear
 - Periodically compare current leak rate to initial leak rate to determine leak reduction expected
 - Replace rod packing when the leak reduction expected is equal to or exceeds the economic replacement threshold

Solution: Rod Packing Replacement

Economic Replacement Thresholds

Rings Only

Rings:	\$1,620
Rod:	\$0
Gas:	\$7/Mcf
Operating:	8,000 hours/year

Rods and Rings

\$1,620
\$9,450
\$7/Mcf
8,000 hours/year

Leak Reduction Expected (cf/hour)	Payback (years)	
32	1	
17	2	
12	3	
9	4	

Leak Reduction Expected (cf/hour)	Payback (years)	
217	1	
114	2	
79	3	
62	4	

Based on 10% interest rate

Methane to Markets

Centrifugal Compressors: What is the Problem?

- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 40 to 200 cubic feet per minute (cf/minute) to the atmosphere
- High pressure seal oil circulates between rings around the compressor shaft
- Gas absorbs in the oil on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Solution: Replace Wet Seals with Dry Seals

- Dry seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- At high rotation speed, gas is pumped between the seal rings by grooves, creating a high pressure barrier to leakage
- Only a very small amount of gas escapes through the gap

Methane Savings: Dry Seals

- Dry seals typically leak at a rate of only 0.5 to 3 cf/minute
 - Significantly less than the 40 to 200 cf/minute emissions from wet seals
- Gas savings translate to approximately \$112,000 to \$651,000 at \$7/Mcf

Economics of Replacing Seals

 Compare costs and savings for a 6-inch shaft beam compressor

	Dry Seal	Wet Seal
Cost Category	(\$)	(\$)
Implementation Costs ¹		
Seal costs (2 dry @ \$13,500/shaft-inch, w/testing)	\$162,000	
Seal costs (2 wet @ \$6,7500/shaft-inch)		\$81,000
Other costs (engineering, equipment installation)	\$162,000	\$0
Total Implementation Costs	\$324,000	\$81,000
Annual O&M	\$14,100	\$102,400
Annual Methane Emissions (@ \$7/Mcf; 8,000 hours/year)		
2 dry seals at a total of 6 cf/minute	\$20,160	
2 wet seals at a total of 100 cf/minute		\$336,000
Total Costs Over 5-Year Period	\$495,300	\$2,273,000
Total Dry Seal Savings Over 5 Years		
Savings	\$1,777,700	
Methane Emissions Reductions (Mcf; at 45,120 Mcf/year)	225,600	

1 Flowserve Corporation updated with Nelson Farrar indices

Discussion Topics

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits

Monitoring & Targeting Energy Usage

Brian Tyers

Stantec Consulting

Monitoring and Targeting What you do not measure, you cannot control !!

Tom Peters

Monitoring and Targeting (M&T) is the backbone of any energy management program

Energy savings, if not monitored, will quickly erode

Energy Use & Intensity "Can Drift"

Steps

Data collection
Production; fuel, electrical energy

Baseline selection
 Stable energy use pattern
 Used for gauging on-going performance

Environment

Canada

Estimate of difference in energy use
 Actual energy use versus
 Predicted energy use

Cumulative summation of differences (CUSUM)

Fuel Gas – 2003-2005

Electrical – 2003-2005

Tracking a Key Performance Indicator (Energy Intensity)

Total Energy – 2003-2005

Conclusions

- Identify the magnitude of energy use/wastage and associated emissions and their value at the Facility level
- Establish energy/emissions baselines and intensity indices
- Motivate Staff to manage energy usage, costs and emissions
- Budget More Accurately

