Methane to Markets

Directed Inspection and Maintenance

Energy Management Workshop for Upstream and Midstream Operations

January 17, 2006

Directed Inspection and Maintenance (DI&M): Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions

What is the Problem?

- Gas leaks are <u>invisible</u>, <u>unregulated</u> and <u>go</u> <u>unnoticed</u>
- Methane to Markets companies find that valves, connectors, compressor seals and open-ended lines (OELs) are major sources
 - 27 billion cubic feet (Bcf) of methane emitted per year by reciprocating compressors seals and OELs, each contributing equally to the emissions

What are the Sources of Emissions?

Methane to Markets

How Much Methane is Emitted?

Methane Emissions from Leaking Components at
Gas Processing Plants

Component Type	% of Total Methane Emissions	% Leakers	Estimated Average Methane Emissions per Leaking Component (Mcf/year)		
Valves (Block & Control)	26.0 %	7.4 %	66		
Connectors	24.4 %	1.2 %	80		
Compressor Seals	23.4 %	81.1 %	372		
Open-ended Lines	11.1 %	10.0 %	186		
Pressure Relief Valves	3.5 %	2.9 %	844		
Source: Clearstone Engineering, 2002, Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants. Report of results from field study of 4 gas processing plants in WY and TX to evaluate opportunities to economically reduce methane emissions. Mcf = thousand cubic feet					

How Much Methane is Emitted?

 A total of 101,193 components were screened at four processing plants

Summary of Natural Gas Losses from the Top Ten Leakers¹

Plant	Gas Losses	Gas Losses From	Contribution	Contribution	
Number	From Top 10	All Equipment	By Top 10	By Total	
	Leakers	Leakers	Leakers	Leakers	
	(Mcf/day)	(Mcf/day)	(%)	(%)	
1	43.8	122.5	35.7	1.78	
2	133.4	206.5	64.6	2.32	
3	224.1	352.5	63.6	1.66	
4	76.5	211.3	36.2	1.75	
Combined	477.8	892.84	53.5	1.85	
¹ Excluding leakage into flare system					
Source: Clearstone Engineering, 2002,					

Methane Recovery

- Fugitive losses can be dramatically reduced by implementing a DI&M program
 - Voluntary program to identify and fix leaks that are cost effective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leakers with information of where to look

What is DI&M?

- Direct Inspection and Maintenance
 - Cost-effective practice by definition
 - Find and fix significant leaks
 - Choice of leak detection technologies
 - Strictly tailored to company's needs

 DI&M is NOT a regulated volatile organic compound (VOC) leak detection and repair program (such as the US LDAR Program)

Screening and Measurement

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectiveness	Approximate Capital Cost		
Soap Solution	**	\$		
Electronic Gas Detectors	*	\$\$		
Acoustic Detection/ Ultrasound Detection	**	\$\$\$		
Toxic Vapor Analyzer / Flame Ionization Detector	*	\$\$\$		
Bagging	*	\$\$\$		
High Volume Sampler	***	\$\$\$		
Rotameter	**	\$\$		
Leak Imaging	***	\$\$\$		
Source: EPA's Lessons Learned Study				

* - Least effective at screening/measurement

\$ - Smallest capital cost

*** - Most effective at screening/measurement

\$\$\$ - Largest capital cost

DI&M Using Infrared Leak Detection

 Video recording of fugitive leaks found by various infrared leak detection technologies

How Do You Implement DI&M?

- Evaluate the leaks detected measure results
- High Volume Sampler
- Toxic Vapor Analyzer and correlation factors
- Rotameters
- Calibrated bag
- Engineering calculations

Is Recovery Profitable?

Repair the Cost-Effective Components					
Component	Value of Lost gas ¹ (\$)	Estimated Repair cost (\$)	Payback (Months)		
Plug Valve: Valve Body	29,498	200	0.1		
Union: Fuel Gas Line	28,364	100	0.1		
Threaded Connection	24,374	10	0.0		
Distance Piece: Rod Packing	17,850	2,000	1.4		
Open-Ended Line	16,240	60	0.1		
Compressor Seals	13,496	2,000	1.8		
Gate Valve	11,032	60	0.1		
Source: Hydrocarbon Processing, May 2002 ¹ Based on \$7/Mcf gas price					

DI&M Lessons Learned

- A successful, cost-effective DI&M program requires measurement or estimation of the leak volume
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- Open-ended lines, compressor seals, blowdowns, engine-starter and pressure relief valves represent <3% of components but >60% of methane emissions
- The business of leak detection has changed dramatically with new remote detection technology

Industry Experience: Targa Resources (formerly Dynegy)

- Surveyed components in two processing plants: 23,169 components
- Identified leaking components: 857, or 3.6%
- Repaired components: 80 to 90% of the identified leaking components
- Annual methane emissions reductions: 198,000 Mcf/year
- Annual savings: \$1,386,000 / year (at \$7/Mcf)

Discussion Questions

- To what extent are you implementing these opportunities?
- How could these opportunities be improved upon or altered for use in your operation?
- Can you suggest other methods for reducing emissions from leaking components?
- What are the barriers (technological, economic, lack of information, manpower, etc.) that are preventing you from implementing these practices?

Contact Information

- Roger Fernandez
 202-343-9386
 fernandez.roger@epa.gov
- epa.gov/gasstar
- methanetomarkets.org