

Methane Savings from Natural Gas Compressors

Energy Management Workshop – January 16, 2007

Jim Cormack - TransCanada

Leading North American energy company

- Competitively positioned in natural gas transmission & power services
- \$24.1 billion of premium pipe and power assets (\$Cdn at Dec. 31, 2005)
- Skilled, expert people with strong technical knowledge
- Strong financial position

Natural Gas Transmission Assets

Power Assets

Transportation Pipeline Compressor Station

5 TransCanada

Emissions Management

A Three Tier Approach to Methane Emissions Management

Blowdown Emissions Management

Fugitive Emissions Management

Fugitive emissions management program

- Reduce fugitive emissions by implementing an effective leak detection and repair (LDAR) program
- **Measure** fugitive emissions from our facilities
 - use of high flow sampler (HFS)
 - annual measurement program of 10% of all facilities
- Reduce engineered fugitive emissions through research and development programs in place

Fugitive emissions management

(LDAR vs measurement)

- High flow sampler measurement
 - Accuracy: +/- 10%
 - Identification of most "cost effective fixes"
- Bacharach HFS

Measurement program

- Complete measurement of 10% of facilities per annum with High Flow Sampler
 - conventional bagging is 10 times slower
- Develop annual leak rates for different types of facilities to calculate system emissions
- Measurement data allows derivation of our GHG inventories.

Methane emissions management

Methane emissions from pipeline system by type of facility.

Leaking Component Inventory

Methane emissions management

Sample field measurement data analysis

Fugitive emissions management - opportunities

Priority repairs...

LDAR program achievement

Fugitive Emissions in million ft3 CH4

LDAR program savings

- The Management System along with the data collected allows us to focus on issues which present an opportunity to improve the program and reduce overall costs.
- Reducing the frequency of the Leak Detection and Repair Task (LDAR)
- Have a better understanding of larger leaks and develop plans to address them.

O&M investment in LDAR...

Emissions Reducation and Field operations manhours (PM and CM)

The Wildrose example...

Emissions Reducation and Field operations manhours

What can we do about leaking valves?

Build a leak priority model based on HFS reports.

- Ownership would be Regional Integrity
- Better understanding of large leaks and the source of the problem.
- Investigate suspected washed out valves.
- Determine the viability of repairs and build projects.

Edit View Favorites Tools	Help										
) Back 🔹 🕥 - 💽 🛃 🌔	🏠 🔎 Se	arch 🤺 Favo	orites 💽	Media 🧭	8-8) (1)				
ess 🗿 http://geofind.tcpl.ca:7105	/geofind/sampl	erSurvevSearch.	do?id=2274			- C.S.				🗸 🏹 Go	Link
	37672	1999-02-10	TCP	Comprare	1.5	2	0	0%	\$0	\$0	
	<u>37673</u>	1999-05-10	TCP	CompYard	1.5	2.15	5754	0%	\$31.13	\$7.29	
	<u>37674</u>	1999-05-10	ТСР	CompYard	1.5	2.2	2966	0%	\$16.05	\$3.76	
	<u>37675</u>	1999-05-10	TCP	CompYard	1.5	2.45	2906	0%	\$15.72	\$3.68	
	37676	1999-05-10	TCP	CompYard	1.5	2.45	2906	0%	\$15.72	\$3.68	
	37677	1999-05-10	TCP	CompYard	1.5	2	0	0%	\$0	\$0	
	37678	1999-05-10	BE	CompYard	12	2.2	17846	0%	\$96.55	\$22.6	
	37679	1999-05-10	ТСР	CompYard	0.5	2	0	0%	\$0	\$0	
	37680	1999-05-10	ТСР	CompYard	1.5	2	0	0%	\$0	\$0	
	37681	1999-05-10	TCP	CompYard	1.5	2.3	449	0%	\$2.43	\$0.57	
	37682	1999-05-10	тср	CompYard	1.5	2	0	0%	\$0	\$0	
	37683	1999-05-10	тср	CompYard	1.5	2	0	0%	\$0	\$0	
	37684	1999-05-10	тср	CompYard	1.5	2	0	0%	\$0	\$0	
	37685	1999-05-10	тср	CompYard	1.5	2.15	825	0%	\$4.46	\$1.04	
	37686	1999-05-10	тср	CompYard	1.5	2.2	425	0%	\$2.3	\$0.54	
	37687	1999-05-10	TCP	CompYard	0.5	2	0	0%	\$0	\$0	
	37688	1999-05-10	ТСР	CompYard	0.5	2	0	0%	\$0	\$0	
	37689	1999-05-10	TCP	CompYard	0.5	2.3	225	0%	\$1.22	\$0.28	
	37690	1999-05-10	BL	CompYard	16	5.9	1835700	18%	\$9931.14	\$2325.1	
	37691	1999-05-10	BL	CompYard	16	9.6	5309677	54%	\$28725.35	\$6725.24	
	37692	1999-05-10	тст	CompYard	0.5	2.2	425	0%	\$2.3	\$0.54	
	37693	1999-05-10	TCP	CompYard	0.5	2	0	0%	\$0	\$0	
	37694	1999-05-10	тст	Scrubber	0.5	2.35	231	0%	\$1.25	\$0.29	
	37695	1999-05-10	тст	Scrubber	0.5	2.35	231	0%	\$1.25	\$0.29	
	37696	1999-05-10	тср	UtilGS	1.5	2	0	0%	\$0	\$0	

Benefits of a team developing the system...

- Reduction in emissions by focusing on the larger "more complicated" leaks
- Increase the value of the task by removing redundancy
- Spend less time repairing leaks that account to very little of the total volume lost.
- Improve shipping reliability benefits producers.
- Using the HFS gives us a better understanding of gas loss and value.
- Would help employees determine what leaks they should concentrate their efforts on based the volume being lost.

Methane Emissions Management (research and development project)

Gas-Gas Ejector for low press. Gas

- Gas-gas ejector for dry gas seal leak capture
- Use of gas-gas ejector to recompress seal gas emissions
- Designing a gas-gas ejector to capture seal gas emissions
- Re-injecting to high pressure system
- Negligible operating cost

Gas-gas ejector for dry gas seal compressors leak capture - (research and development project)

Compressor dry gas seal emissions mitigation research project

Process Flow Diagram (continuos process)

26 TransCanada

27 TransCanada **Didsbury site**

Conclusions

Multi stakeholder team to manage emissions:

- source identification
- quantification
- tracking systems to analyze
- monitoring progress
- setting targets
- mitigative actions
- pilot programs
- continuous improvement (r&d)

Methane emissions management at TransCanada

Contact info:

Jim Cormack

Advisor, Climate Change and Air Quality Policy TransCanada PipeLines

Tel: (403) 920-6268

Email: jim_cormack@transcanada.com

