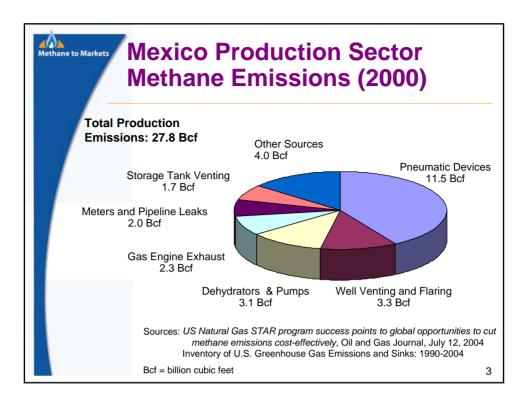


Opportunities for Methane Emissions Reductions in Natural Gas Production

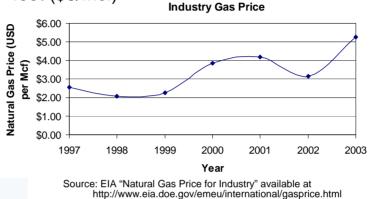
Technology Transfer Workshop


PEMEX & Environmental Protection Agency, USA

April 25, 2006 Villahermosa, Mexico

Agenda

- Reduced Emissions Completions
 - Methane Losses
 - Methane Recovery
 - Is Recovery Profitable?
 - Industry Experience
 - Discussion Questions
- Smart Automation Well Venting
 - Methane Losses
 - Methane Recovery
 - Is Recovery Profitable?
 - Industry Experience
 - Discussion Questions
- Project Summaries for Mexico


Methane Losses During Well Completions

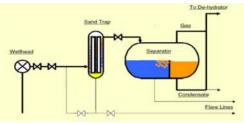
- It is necessary to clean out the well bore and formation surrounding perforations
 - After new well completion
 - Completion: installation of permanent wellhead equipment for production of oil and natural gas
 - After well workovers
 - Workover (or cleanup): operations to restore or increase well production
- Operators produce the well to an open pit or tankage to collect sand, cuttings, and reservoir fluids for disposal
- Vent or flare the natural gas produced
 - Venting may lead to dangerous gas buildup
 - Flaring is preferred where there is no fire hazard or nuisance

Wellhead Gas Prices

 Gas prices in Mexico have increased in recent years to over \$6 per thousand cubic feet (\$6/Mcf)

Methane to Markets

Methane Recovery: Reduced Emissions Completions (REC)


- REC or Green Completions recover natural gas and condensate produced during well completions or workovers
- Use portable equipment to process gas and condensate suitable for sales
- Send recovered gas through permanent dehydrator and meter to sales line, reducing venting and flaring
- An estimated 25.2 Bcf or \$176 million of natural gas can be recovered annually using Green Completions in U.S.
 - 25,000 MMcf from high pressure wells
 - 181 MMcf from low pressure wells
 - 27 MMcf from workovers

MMcf = million cubic feet

Green Completions: Equipment

- Truck- or trailer- mounted equipment to capture produced gas during cleanup
 - Sand trap
 - Three-phase separator
- Use portable desiccant dehydrator for workovers requiring glycol dehydrator maintenance

Temporary, Mobile Surface Facilities Schematic Source: BP

7

Methane to Markets

Green Completions: Requirements

- Must have permanent equipment on site before workover or cleanup
 - Piping connection to sales line
 - Dehydrator
 - Lease meter
 - Stock tank
- Sales line gas can be used for fuel and/ or for gas lift operations and techniques in low pressure wells

Green Completions: Low Pressure Wells

- Can use portable compressors to start up well when reservoir pressure is low
 - Artificial gas lift to clear fluids
 - Boost gas to sales line
- Higher cost to amortize investment in portable equipment

Portable Compressors, Separator and Other Equipment on a trailer

Source: Herald

9

Is Recovery Profitable?

- U.S. companies report recovering an average of 53% of total gas lost during well completions and workovers
- Estimate an average of 3,000 Mcf¹ of natural gas can be recovered from each green completion
- Estimate 1 to 580 barrels of condensate can be recovered from each green completion

¹Values for high pressure wells

Green Completions: Benefits

- Reduced methane emissions during completions and workovers
- Sales revenue from recovered gas and condensate
- Improved relations with government agencies and public neighbors
- Improved safety
- Reduced disposal costs

11

Industry Experience: BP in U.S.

- Capital investment about \$1.4 million on portable three-phase separators, sand traps, and tanks
- Used Green Completions on 106 wells
- Total natural gas recovered: about 350 MMcf per year
- Total condensate recovered: about 6,700 barrels per year

Industry Experience: BP in U.S.

- Total value of natural gas and condensate recovered: about \$840,000^{1,2} per year
- Investment recovered in just over 2 years

¹Value of natural gas at \$1.99 per thousand cubic feet

²Value of condensate at \$22 per barrel

Three Phase Separator, Source: BP

13

Weatherford Durango Experience

- Successfully completed pilot project in the Fruitland coal formations in Durango, Colorado, U.S.
 - Well depth: 2,700 to 3,200 feet
 - Pore pressure: estimated at 80 pounds per square inch gauge (psig)
 - Well type: coal bed methane
 - Hole size: 5 ½ inches
 - Number of wells: 3 well pilots
- Captured 2 million cubic feet of gas which was sold by the operator

Weatherford Portable Equipment

15

Weatherford Green Completions

- Use pipeline gas with proprietary foaming agent as compressible fluid to initiate cleanout
- System includes
 - Wet screw compressor when well pressure is less than 80 pounds per square inch gauge (psig)
 - Booster compressor, three-phase separator and sand trap
- Estimate cleanup pressure of 300 to 400 psig at a well depth of 8,000 feet
- Suggest use in all kinds of completion and workover cleanup operations

Discussion Questions

- To what extent are you implementing this opportunity?
- Can you suggest other approaches for reducing well completion venting?
- How could this opportunity be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing this practice?

17

Methane Losses: Well Blowdowns

- Accumulation of liquid hydrocarbons or water in the well bores reduces, and can halt, production
- Common "blow down" practices to temporarily restore production can vent 80 to 1,600 Mcf per year¹ to the atmosphere per well

¹Mobil Big Piney Case Study 1997

What is the Problem?

- Conventional plunger lift systems use gas pressure buildups to repeatedly lift columns of fluid out of well
- Fixed timer cycles may not match reservoir performance
 - Cycle too frequently (high plunger velocity)
 - · Plunger not fully loaded
 - Cycle too late (low plunger velocity)
 - Shut-in pressure cannot lift fluid to top
 - May have to vent to atmosphere to lift plunger

Source: Weatherford

19

Methane to Markets

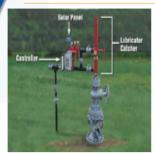
Conventional Plunger Lift Operations

- Manual, on-site adjustments tune plunger cycle time to well's parameters
 - Not performed regularly
 - Do not account for gathering line pressure fluctuations, declining well performance, plunger wear
- Requires manual venting to atmosphere when plunger lift is overloaded

Smart Automation Well Venting

- Automation can enhance the performance of plunger lifts by monitoring wellhead parameters such as:
 - Tubing and casing pressure
 - Flow rate
 - Plunger travel time
- Using this information, the system is able to optimize plunger operations
 - To minimize well venting to atmosphere
 - Recover more gas
 - Further reduce methane emissions

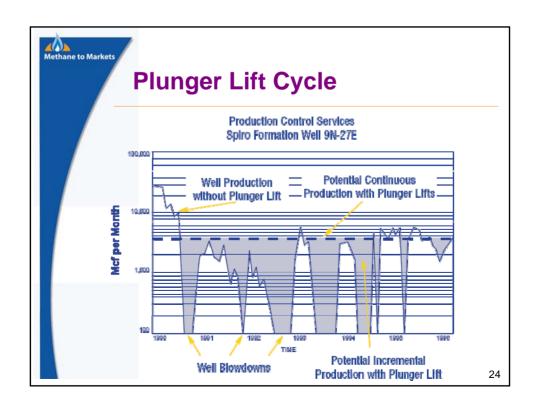
21


Methane to Markets

Methane Recovery: How Smart Automation Reduces Methane Emissions

- Smart automation continuously varies plunger cycles to match key reservoir performance indicators
 - Well flow rate
 - Measuring pressure
 - Successful plunger cycle
 - · Measuring plunger travel time
- Plunger lift automation allows producer to vent well to atmosphere less frequently

Automated Controllers


- Low-voltage; solar recharged battery power
- Monitor well parameters
- Adjust plunger cycling

Source: Weatherford

- Remote well management
 - Continuous data logging
 - Remote data transmission
 - Receive remote instructions
 - Monitor other equipment

Source: Weatherford

Methane Savings

- Methane emissions savings is a secondary benefit
 - Optimized plunger cycling to remove liquids increases well production by 10 to 20%¹
 - Additional 10%¹ production increase from avoided venting
- 500 Mcf per year methane emissions savings for average U.S. well

¹Reported by Weatherford

25

Other Benefits

- Reduced manpower cost per well
- Continuously optimized production conditions
- Remotely identify potentially unsafe operating conditions
- Monitor and log other well site equipment
 - Glycol dehydrator
 - Compressor
 - Stock tank
 - Vapor recovery unit

Is Recovery Profitable?

- Smart automation controller installed cost: about \$11,000
 - Conventional plunger lift timer: about \$5,000
- Personnel savings: double productivity
- Production increases: 10% to 20% increased production
- Savings =
 - (Mcf per year) x (10% increased production) x (gas price)
 - + (Mcf per year) x (1% emissions savings) x (gas price)
 - + (personnel hours per year) x (0.5) x (labor rate)
 - \$ savings per year

27

Economic Analysis

Non-discounted savings for average U.S. well =

(50,000 Mcf per year) x (10% increased production) x (\$7 per Mcf)

- + (50,000 Mcf per year) x (1% emissions savings) x (\$7 per Mcf)
- + (500 personnel hours per year) x (0.5) x (\$30 per hour)
- (\$11,000) cost

\$35,000 savings in first year

3 month simple payback

U.S. Industry Experience

- BP reported installing plunger lifts with automated control systems on about 2,200 wells
 - 900 Mcf reported annual savings per well
 - \$12 million costs including equipment and labor
 - \$6 million total annual savings
- Another company shut in mountaintop wells inaccessible during winter
 - Installed automated controls allowed continuous production throughout the year¹

¹Morrow, Stan and Stan Lusk, Ferguson Beauregard, Inc. Plunger-Lift: Automated Control Via Telemetry. 2000.

29

Project Summary for Mexico

Reduced Emissions Completions

Project Description: Performing a reduced emissions completion on one high pressure well

3.3 MMcf per year per well (93.5 thousand cubic meters per well)
\$17,300 (\$5.25 per Mcf gas)
(\$770) per well per day (rental cost)
\$10 per well per day
17 months
\$40,000 (\$30 per tonne of CO ₂ e)

¹One well is completed in about 30 days

Project Summary for Mexico

Smart Automation Well Venting

Project Description: Install one smart automated well controller on a well to increase production rate

Methane Saved:	500 Mcf per year (14 thousand cubic meters per year)	
Sales Value:	\$2,600 (\$5.25 per Mcf gas)	
Capital and Installation Cost:	(\$11,000)	
Operating and Maintenance Cost:	(\$1,950) per well	
Payback Period:	60 months	

Ī	Additional Carbon Market Value:	\$6,000	(\$30 per tonne of CO ₂ e)

31

Discussion Questions

- To what extent are you implementing this opportunity?
- Can you suggest other approaches for reducing well venting?
- How could this opportunity be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, manpower, etc.) that are preventing you from implementing this practice?

Reference: Unit Conversions

1 cubic foot =	0.02832 cubic meters
Degrees Fahrenheit =	(°F – 32) * 5/9 degrees Celsius
1 inch =	2.54 centimeters
1 mile =	1.6 kilometers
14.7 pounds per square foot =	1 atmosphere