Projects that Achieve Large Methane Emissions Reductions in Oil and Gas Operations

Oil and Gas Methane Emissions Reduction Workshop Tomsk, Russia 14-16 September 2005

Methane to Markets

Agenda

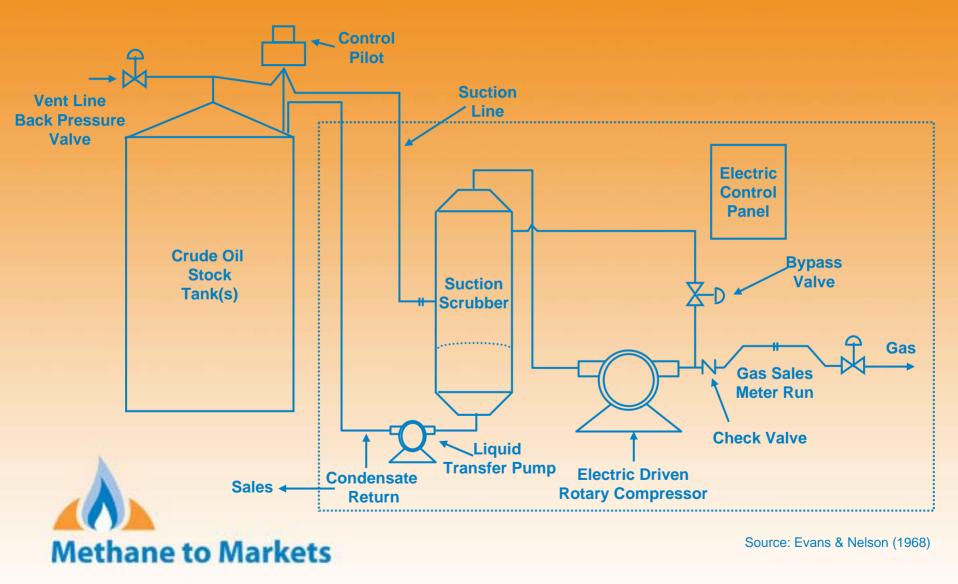
- Why reduce methane emissions?
- Vapor recovery units
- Low-bleed pneumatic devices
- Directed inspection and maintenance
- Conclusions

Why Reduce Methane Emissions?

- New technologies and practices to reduce methane emissions also increase profits
 - sell carbon credits
 - sell natural gas
 - use natural gas for on-site fuel
 - reduce emissions

Storage Tanks: What is the Problem?

- Storage tanks are a major emissions source of:
 - methane
 - ethane, propane, butane
 - benzene, toluene, and other pollutants
- Flashing losses occur when crude is transferred from a gas-oil separator at higher pressure to an atmospheric pressure storage tank
- Working losses occur when liquid levels change and when liquid in tank is agitated
- Standing losses occur with daily temperature and barometric pressure changes



Reduce Emissions Using Vapor Recovery Units

- Vapor recovery units draw gas out of the tank and compress it to usable pressure
- Recovered vapors are more valuable than natural gas and have multiple uses
 - re-inject into sales pipeline
 - use as on-site fuel
 - send to processing plants for recovering natural gas liquids

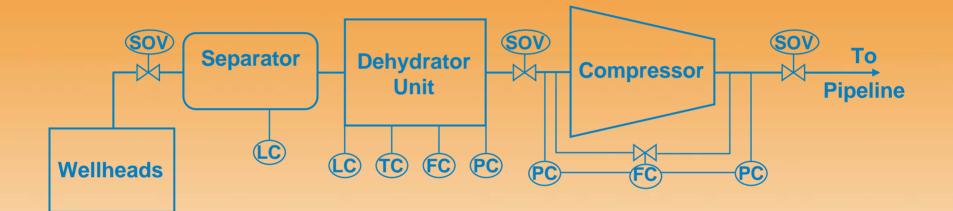
Standard Vapor Recovery Unit

Vapor Recovery Unit: Economic Benefits

COSTS AND BENEFITS OF INSTALLING A VAPOR RECOVERY UNIT (VRU) ON PETROLEUM LIQUID STORAGE TANKS

Capital Cost:	\$15 for every cubic meter per day of capacity			
Annual Operating Cost:	\$3 for every cubic meter per day of capacity			
Project Benefits:	Recovered vapors can be used for: • Carbon credits • Fuel gas • Sale • Natural gas liquids recovery			
Annual Methane Savings:	140 to 2,700 thousand cubic meters			
Example Economics for a 1.4 thousand cubic meter per day VRU				
Payback Period:	19 months - recovered vapor is valued at \$0.11 per cubic meter			
Carbon Credits:	3,500 Tonnes CO ₂ equivalent			
Breakeven carbon credit value*	\$4.28 per Tonne CO ₂ equivalent			

* Assuming zero value for gas sales and 10% discount factor



Pneumatic Devices: What is the Problem?

- During normal operations, pneumatic devices vent natural gas to atmosphere
- High-bleed devices vent an average of 11m³ of natural gas per hour – 94,000 m³/year
- Actual bleed rate depends on device's design and purpose

Location of Pneumatic Devices at Production Sites

- SOV = Shut-off Valve (Unit Isolation)
- LC = Level Control (Separator, Contactor, TEG Regenerator)
- TC = Temperature Control (Regenerator Fuel Gas)
- FC = Flow Control (TEG Circulation, Compressor Bypass)
- PC = Pressure Control (FTS Pressure, Compressor Suction/Discharge)

Reduce Emissions Using Low-Bleed Pneumatic Devices

- Replace high-bleed devices with low-bleed devices
 - low-bleed devices perform the same function and vent less methane
 - replace at end of high-bleed device's economic life
 - typical costs range from \$80 to \$3,500 per device
 - up to 80% of all high-bleed devices can be replaced or retrofitted to low-bleed

Pneumatic Devices: Economic Benefits

COSTS AND BENEFITS OF REPLACING A HIGH-BLEED PNEUMATIC DEVICE WITH A LOW-BLEED PNEUMATIC DEVICE				
Capital Cost:	\$80 to \$3,500 – depends on application			
Annual Operating Cost:	Minimal			
Project Benefits:	 Reduced methane emissions can be used for: Carbon credits Sale 			
Annual Methane Savings:	1 to 85 thousand cubic meters per year			
Example Economics for installing a low-bleed liquid level controller				
Payback Period:	9 months - recovered vapor is valued at \$0.11 per cubic meter			
Carbon Credits:	67 Tonnes CO ₂ equivalent			
Breakeven carbon credit value*	\$1.10 per Tonne CO ₂ equivalent			

* Assuming zero value for gas sales and 10% discount factor

Methane Leaks: What is the Problem?

- Leaking valves, connectors, compressor seals and open-ended lines are major sources of methane emissions
- Methane leaks are *invisible*, *go unnoticed* and are *often unregulated*

Methane Leaks: What is the Problem?

Methane Emissions from Leaking Components

Component Type	% of Total Methane Emissions	% Leaks	Estimated Average Methane Emissions per Leaking Component (m3/year)
Valves (Block & Control)	26.0%	7.4%	1,869
Connectors	24.4%	1.2%	2,266
Open-Ended Lines	11.1%	8.1%	5,268
Pressure Relief Valves	3.5%	2.9%	23,902

Source: Clearstone Engineering, 2002, Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants. Report of results from field study of 4 gas processing plants to evaluate opportunities to economically reduce methane emissions.

Reduce Emissions with Directed Inspection and Maintenance

- Directed Inspection and Maintenance (DI&M)
 - find and fix large leaks
 - periodically conduct follow-up surveys only on components likely to leak

Optical Leak Imaging

Methane to Markets

• Screening - finding leaks

- soap bubble screening
- electronic screening (sniffer)
- toxic vapor analyzer (TVA)
- organic vapor analyzer (OVA)
- ultrasound leak detection
- acoustic leak detection
- optical leak imaging

Reduce Emissions with Directed Inspection and Maintenance

- Measure the leaks detected
 - -high volume sampler
 - -toxic vapor analyzer (correlation factors)
 - -rotameters

 United States company experience

> a tube fitting leaked 120,000 m³/year. A very quick repair requiring only five minutes reduced the leak rate to 1,000 m³/year. The gas saved was worth \$12,000.

Methane to Markets

Directed Inspection and Maintenance: Economic Benefits

COSTS AND BENEFITS OF BEGINNING DIRECTED INSPECTION AND MAINTENANCE (DI&M) AT DISTRIBUTION GATE STATIONS AND SURFACE FACILITIES

Capital Cost:	\$1 per component to lease equipment			
Annual Operating Cost:	\$20 to \$1,200 per distribution site			
Project Benefits:	 Reduced methane emissions can be used for: Carbon credits Sale 			
Annual Methane Savings:	17 thousand cubic meters per site			
Example Economics for conducting DI&M at three distribution sites				
Payback Period:	7 months - recovered vapor is valued at \$0.11 per cubic meter			
Carbon Credits:	130 Tonnes CO ₂ equivalent			
Breakeven carbon credit value*	\$1.14 per Tonne CO ₂ equivalent			

* Assuming zero value for gas sales and 10% discount factor

Conclusions

SUMMARY OF METHODS TO ACHIEVE THE MOST METHANE EMISSIONS REDUCTIONS

Technology	Volume of Gas Saved Annually	Benefits	Implementation Cost (United States)
Vapor Recovery	140 to 2,700 thousand cubic meters	Reduced emissions can be sold as gas or as carbon credits	\$15 for every cubic meter per day of capacity
Low Bleed Pneumatic Devices	1 to 85 thousand cubic meters per device		\$80 to \$3,500 per device
Leak Inspection*	17 thousand cubic meters per distribution site		\$20 to \$1,200 per distribution site

*distribution example shown. DI&M applicable in all industry sectors

Conclusions

- Companies profit when setting goals to reduce methane emissions
- Projects can rely on the value of the recovered methane to support positive economics

Contacts

Roger Fernandez United States Environmental Protection Agency +1-202-343-9386 fernandez.roger@epa.gov

Don Robinson ICF Consulting +1-703-218-2512 drobinson@icfconsulting.com

