Reducing Methane Emissions Provides Operating Benefits for International Oil and Gas Companies: A Case Study

Oil and Gas Methane Emissions Reduction Workshop Tomsk, Russia 14-16 September 2005

Methane to Markets

Agenda

- How can new technologies save money?
- Centrifugal compressor dry seals
- Acid gas removal using membranes
- Conclusions

How Can New Technology Save Money?

- New technologies can:
 - Lower capital costs
 - Decrease operating costs
 - Reduce labor requirements
 - Increase reliability
 - Increase safety
- Other benefits include reduced methane emissions and carbon market credits

Compressor Wet Seals: What is the Problem?

- Seal oil circulates between rings around the compressor shaft
- Seal oil absorbs methane
 - Methane removed from seal oil is vented to atmosphere
- Wet seals have high operating costs
 - Seal oil replenishment
 - Oil pump maintenance
 - Pipeline flow efficiency decrease
 - Seal power losses

Seal oil inlet

Reduce Operating Costs with Dry Seals

- Dry seals prevent methane leakage with a highpressure gas barrier
 - At high rotation speed, seals pump gas (instead of oil) between the seal rings, creating a barrier to leakage
- Only small volume of gas escapes through seal gap
- Two seals are often used in tandem
- Large operating cost savings over wet seals
 - No seal oil
 - No seal oil pump
 - Less pipeline drag

Rotating grooves create high-pressure between seals

Methane Recovery with Dry Seals

- Dry seals typically leak at only 0.01 to 0.08 m³ / minute
 - Significantly less than the 1.1 to 5.7
 m³ / minute emissions from wet seals
- Methane savings are a secondary benefit to the up to 94% operating cost savings

Methane to Markets

Dry Seals: Economic Benefits

COSTS AND BENEFITS OF REPLACING WET SEALS WITH DRY SEALS IN CENTRIFUGAL COMPRESSORS (United States costs)

Dry Seal Capital Cost:	\$4,000 per centimeter of shaft diameter			
Incremental Capital Cost over Wet Seals:	\$1,600 more per centimeter of shaft diameter assumes seal oil equipment already purchased			
Dry Seal Annual Operating Cost:	\$6,000 to \$10,000			
Incremental Annual Operating cost versus Wet Seals:	\$94,000 less			
Annual Methane Savings:	Up to 2 million m ³			
Example Economics for Centrifugal Compressor with a 15 centimeter shaft diameter				
Payback Period	54 months, not including carbon credit revenue			
Carbon Credits	18,000 Tonnes CO ₂ equivalent			

Acid Gas Removal: What is the Problem?

- Wellhead natural gas often contains acid gases: H₂S and/or CO₂
 - Corrosive to production, transmission and distribution equipment
 - Do not meet pipeline quality limits
- Acid gas removal processes typically use diethanol amine (DEA) to absorb acid gas
 - DEA process requires expensive equipment and costly operation and maintenance
 - DEA also absorbs and vents methane to the atmosphere with CO₂

Typical Amine Process

Costs: equipment, fuel gas, maintenance

CO, and CH₄

to atmosphere

Reduce Capital and Operating Costs with Membranes

- Natural gas containing CO₂ flows alongside a membrane
 - CO₂ permeates through membrane more readily than methane
 - Residue gas is depleted in CO₂ content
- Up to 65% less capital cost and 90% less operating cost than DEA unit

Acid Gas Removal: Economic Benefits

COSTS AND BENEFITS OF MEMBRANE ACID GAS REMOVAL OVER DIETHANOL AMINE ACID GAS REMOVAL (United States costs)

Membrane Unit Capital Cost:	\$1.5 to \$1.7 million			
Incremental Capital Cost over Diethanol Amine Unit:	\$3 to \$3.3 million less			
Membrane Unit Annual Operating Cost:	\$0.02 to \$0.05 million			
Incremental Annual Operating Cost over Diethanol Amine Unit:	\$0.45 to \$0.48 million less			
Annual Methane Savings:	62,000 m ³ for average United States acid gas removal unit			
Example Economics for a 630 thousand cubic meter per day process unit				
Payback Period	33 months			
Carbon Credits	200 Tonnes CO ₂ equivalent			

All numbers based on 630 thousand m³ per day unit

Conclusions

SUMMARY OF METHODS TO ACHIEVE OPERATIONAL ADVANTAGES AND REDUCE METHANE EMISSIONS

Technology	Gas Saved Annually	Primary Benefit	Cost Comparison to Existing Technology
Centrifugal Compressor Dry Seals	2 million m ³ for each installation	•Less operating cost	40% more capital cost 94% less operating cost
Acid Gas Removal by Membrane	0.06 million m ³ for average acid gas removal unit	•Less capital cost	65% less capital cost 90% less operating cost
Solid Desiccant Dehydration*	0.003 million m ³ for every million m ³ dehydrated	•Less capital cost	35% less capital cost 25% less operating cost

*Described in the accompanying paper

Conclusions

- New technologies simultaneously increase profits, reduce methane emissions and generate carbon credits
- New technologies can have lower capital and operating costs
- Carbon credits from methane emission reductions are an important secondary benefit

Contact Information

Roger Fernandez United States Environmental Protection Agency +1-202-343-9386 fernandez.roger@epa.gov

Don Robinson ICF Consulting +1-703-218-2512 drobinson@icfconsulting.com

