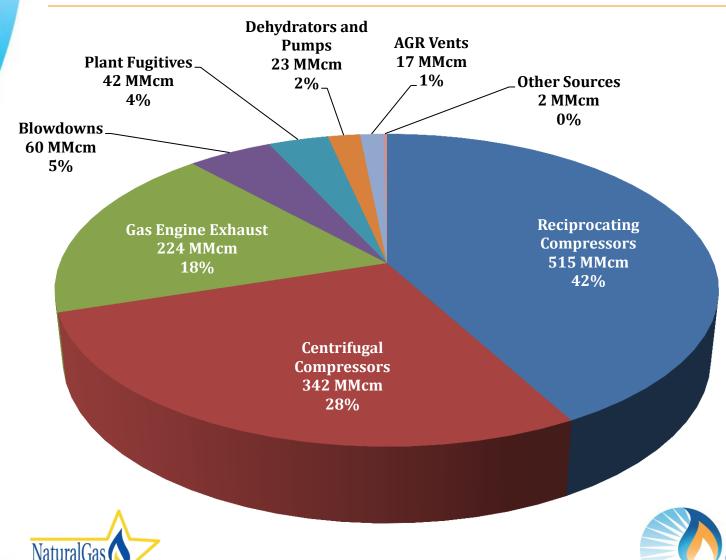
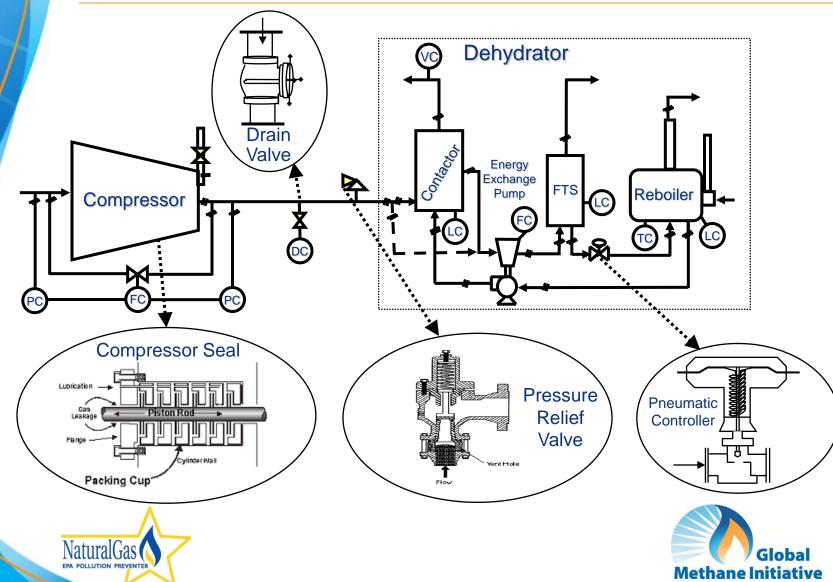
Methane Emission Reductions in Oil and Gas Processing

EPA Middle East Meeting
Washington, D.C.
2 October 2012

Agenda


- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressors
 - Leak detection, quantification, and repair
 - Acid gas removal
- Contacts and Further Information



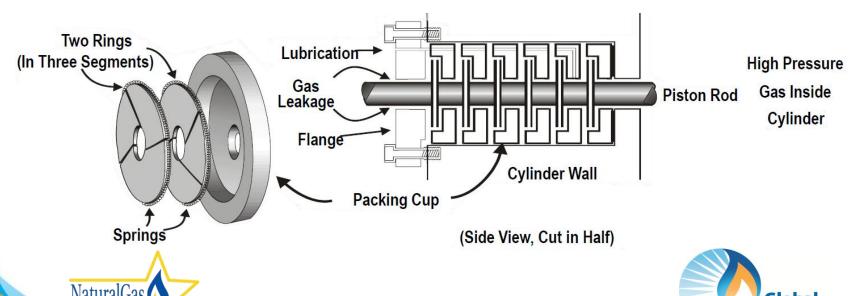
2010 U.S. Processing Sector Methane Emissions (1.2 Bcm)

Emissions Sources in Gas Gathering/Processing Plants

Overview of Technologies and Practices

30 technologies and practices that apply to the processing sector

- Reduce compressor venting with fewer startups
- Begin leak detection, quantification and repair at processing plants
- Eliminate unnecessary equipment and/or systems
- Pipe glycol dehydrator to vapor recovery unit
- Inspect and repair compressor station blowdown valves


- Convert gas-driven pneumatic devices to instrument air
- Economic replacement of rod packing in reciprocating compressors
- Install pressurized storage of condensate
- Alternate acid gas removal technologies
- Replace high-bleed pneumatic devices with low-bleed devices

Reciprocating Compressor Emissions Overview

- Reciprocating compressors rod packing leaks some gas by design
 - Flexible rings fit around the shaft to minimize leakage
 - Leakage still occurs through nose gasket, between packing cups, and between rings and shaft
 - Emissions can range between 0.3 to 25 m³/hour depending on age of packing

Reciprocating Compressor Emission Reductions

- Methane emissions can be reduce through economic replacement of rod packing
 - Measure rod packing leakage periodically over life of packing
 - Determine cost of packing replacement
 - Determine economic replacement threshold
 - Compare value of excess gas lost with worn packing to savings with new packing
 - Replace packing when leak reduction will pay back cost

Economic Replacement Threshold (m³/hr) =
$$\frac{CR \times DF \times 1000}{H \times GP}$$

Where:

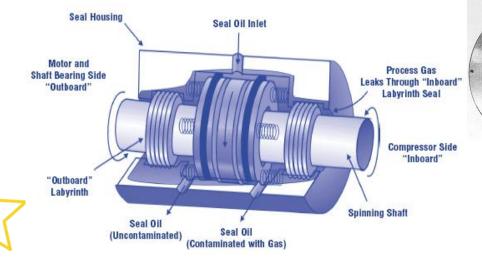
CR = Cost of replacement

DF = Discount factor at interest i, over period n

H = Hours of operation

GP = Gas price per thousand cubic meters

$$DF = \frac{i(1+i)^n}{(1+i)^n-1}$$



Centrifugal Compressor Emissions Overview

- Centrifugal Compressors have seals around rotating shaft to prevent gas from escaping
 - Seals often use oil, called "wet seals"
- The majority of methane emissions occur through seal oil degassing which is often vented to the atmosphere
 - Oil is very effective at preventing leaks but also entrains a substantial amount of gas
 - Emissions from seal oil degassing vents can range between

1.1 to 5.7 m³/minute

Centrifugal Compressor Emission Reductions

 Converting wet seals to dry seals can drastically cut methane emissions

Dry seal springs press stationary ring in seal housing against rotating ring

Process Gas Tries to Leak Between Rings

 At high rotation speed, gas is pumped between seal rings creating a high pressure barrier to leakage

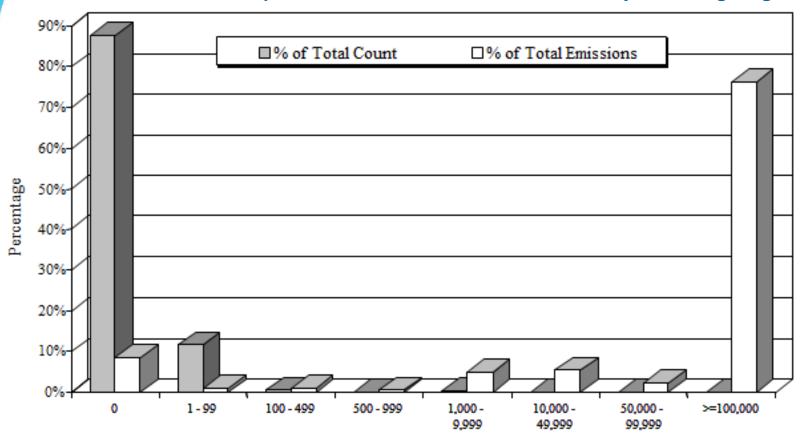
 Only a very small amount of gas escapes through the gap (0.01 to 0.08 m³/min)

- Another alternative is to set up a vapory recovery system to capture vented methane from wet seals
 - Highly effective captures up to 99% of otherwise vented gas
 - Requires less compressor downtime to set up
 - Easy to set up on older wet seal compressors

Stationary Ring

Leak Detection, Quantification, and Repair

- Directed Inspection and Maintenance (DI&M)
 - Cost-effective practice, by definition
 - Find and fix significant leaks
 - Strictly tailored to company's needs
- Real-time detection of methane leaks using infrared technology
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them
- Identified leaks can be measured by a Hi Flow[®] sampler, calibrated bag, turbine meter, or other technology



Component Count vs. Emissions

Distribution of component count and estimated emissions by screening range

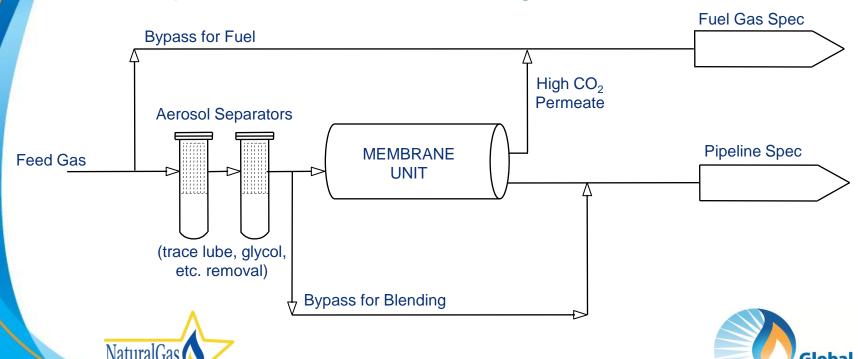
Parts Per Million by Volume (PPMV) Range

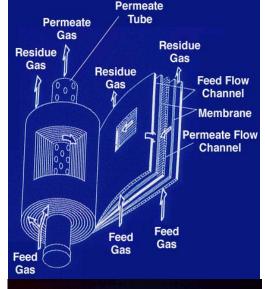
Source: Robinson, et al. "Refinery Evaluation of Optical Imaging to Locate Fugitive Emissions." Journal of Air and Waste Management. Volume 57, July 2007.

Is Recovery Profitable?

Repair the Cost-Effective Components					
Component	Annual Value of Lost Gas (\$)	Estimated Repair Cost (\$)	Payback (months)		
Plug Valve: Valve Body	12,642	200	0.2		
Union: Fuel Gas Line	12,156	100	0.1		
Threaded Connection	10,446	10	0.0		
Distance Piece: Rod Packing	7,650	2,000	3.1		
Open-Ended Line	6,960	60	0.1		
Compressor Seals	5,784	2,000	4.1		
Gate Valve	4,728	60	0.2		
Source: Hydrocarbon Processing, May 2002 Based on \$3/MMBtu gas price					

Acid Gas Removal (AGR) – What is the Problem?


- Wellhead natural gas may contain acid gases
 - Hydrogen sulfide (H₂S) and CO₂ are corrosive to pipelines, compressors, instruments, and distribution equipment
- Acid gas removal processes have traditionally used an aqueous amine solution to absorb acid gas
 - These solutions absorb methane along with the acid gases
- Amine regeneration strips acid gas and absorbed methane
 - If the acid gas is CO₂ it is typically vented to the atmosphere, flared, or recovered for enhanced oil recovery (EOR)
 - H₂S is typically flared (low concentrations) or sent to the sulfur recovery unit (high concentrations)
- There are two commercial alternatives to DEA absorption
 - Membrane
 - Molecular Gate®


AGR Alternatives: Membrane Separator

- Membrane separation of CO₂ from feed gas
- High CO₂ permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas
- Low CO₂ product exiting the membrane exceeds pipeline spec and is blended with feed gas

Membrane Economics: Is Recovery Profitable?

- Cost comparison
 - DEA AGR cost \$4.5 to \$5 million capital, \$0.5 million operation and maintenance (O&M) per year
 - Membrane process cost \$1.5 to \$1.7 million capital, \$0.02 to \$0.05 million
 O&M per year
- Optimization of permeate stream
 - Permeate mixed with fuel gas, \$175/Mcm fuel credit
 - Only install enough membranes to take feed from >3% to <2% CO₂
 - Expand with additional membranes

AGR Alternatives: Molecular Gate®

- Molecular Gate[®] adsorbs acid gas (CO₂ and H₂S) in fixed bed
- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane
- Bed regenerated by depressuring
 - 10% of feed methane lost in depressuring
 - Route tail gas to fuel
- Applicable to lean gas sources

Molecular Gate® Economics: Is Recovery Profitable?

- Molecular Gate[®] costs are 20% less than amine process
- Fixed-bed tail gas vent can be used as supplemental fuel
 - Eliminates venting from acid gas removal
- Other Benefits
 - Allows wells with high acid gas content to produce (alternative is shut-in)
 - Can dehydrate and remove acid gas to pipeline specs in one step
 - Less operator attention

Comparison of AGR Alternatives

	Amine (or Selexol™) Process	Kvaerner Membrane	Molecular Gate® CO ₂
Absorbent or Adsorbent	Water & amine (Selexol™)	Cellulose acetate	Titanium silicate
Methane Savings Compared to Amine Process	1	Methane in permeate gas combusted for fuel	Methane in tail gas combusted for fuel
Regeneration	Reduce pressure & heat	Replace membrane about 5 years	Reduce pressure to vacuum
Primary Operating Costs	Amine (Selexol™) & steam	Nil	Electricity
Capital Cost	100%	35%	<100%
Operating Cost	100%	<10%	80%

Contact and Further Information

Don Robinson

ICF International
Vice President
+1 (703) 218-2512
donald.robinson@icfi.com

Global Methane Initiative

globalmethane.org

Recommended Technologies (Arabic)

epa.gov/gasstar/tools/arabic/index.html

