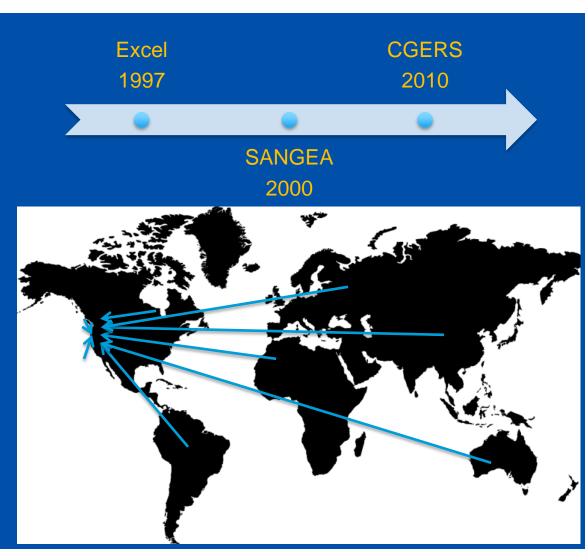
How to Develop a Tier 3 Source-Specific GHG Inventory

Kerry O'Donnell Chevron

GMI Middle East Meeting Washington, D.C. October 2, 2012

Chevron's World-wide GHG Inventory History


1997 Excel spreadsheets

2000 SANGEA

- Custom-designed
- Excel-based macros
- Given to API
- Corporate-wide audits

2010 CGERS

- Chevron GHG and Energy Reporting System
- Software based
- Corporate-wide audits

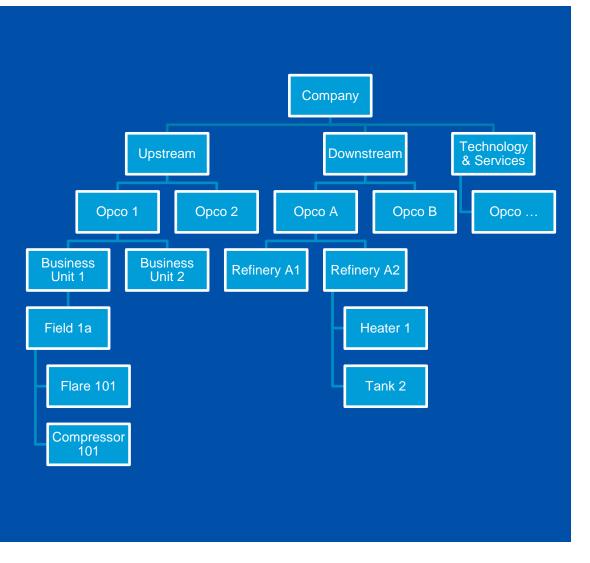
GHG Inventory Components

- Company GHG reporting policy
- Organization
- Inputs
- Calculations
- Management system
- Summary Reports

Company GHG reporting policy

- For example, Chevron has a GHG Protocol that describes
 - Which data should be reported
 - E.g., which point sources, which emissions, which types of operations
 - Which calculations should be used if a regulation is not in place
 - When the data should be reported
 - Who is responsible for reporting data
 - Who is responsible for approving data
 - Who is responsible for providing quality control and technical input
- Recommendation
 - The protocol should be complete, well-written, and kept up-to-date

Organization



Hierarchy

- Must reflect operations
- Determines summary data structure

Lessons Learned

- Match hierarchy to organization
- Consider who will be providing data
- Allow for flexibility when organizations change
- Regulations can require specific hierarchies

Inputs

- Submitted by designated data collectors at the business unit level
- Activity Data
 - Examples:
 - HHV
 - Fuel consumed
 - Count of values
- Lessons Learned:
 - Unit analysis: ensure data is entered in expected units
 - Accuracy: work processes needed to ensure accuracy due to many steps from field collection through entry into database

Calculations

Six Kyoto GHGs

- CO2, CH4, N2O, SF6, PFCs, HFCs
- CO2e

Emission Type

- Direct (within "fenceline")
- Indirect (purchased/sold electricity and steam)
- Products (combustion of solid, liquid, and gaseous finished products)

Reporting Bases

- Equity
- Operational control
- Total

PFCs & HFCs

- Refrigerants
- Fire Suppression
- o ABU

SF6

- Electrical Insulation
- Only Downstream

Calculations

Calculation Methodologies

- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry – August 2009
- CARB California Air Resources Board
- EPA Environmental Protection Agency
- EU ETS European Union Emissions Trading Scheme
- NGERS Australia National GHG and Energy Reporting
- Others

Tiers

- Tier 1 (C) default values
- Tier 2 (B) usually higher heating value measured
- Tier 3 (A) usually carbon content measured
- Tier 4 (A) usually GHG gas is measured

Calculations

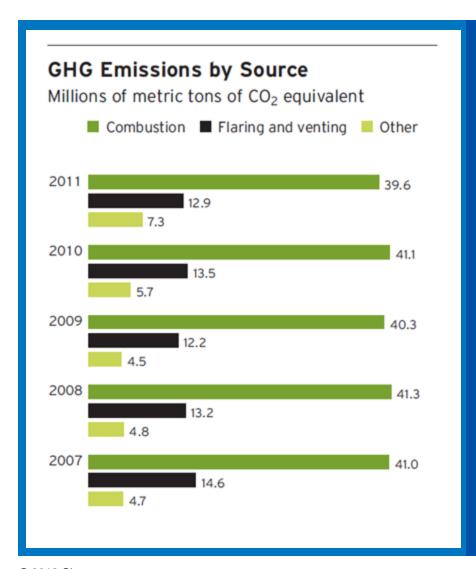
Lessons Learned

- Calculations need to be stored and organized in a way which they can be easily referenced and updated
- Beneficial to have software system that can 'push' changes and updates to calculations to all relevant point source models
- Different regulations require slightly different calculations for the same emissions so it is good to be able to track multiple calculations for a given point source

Managing System

	Spreadsheet	Software
Initial configuration	Easy for small operations	Can be difficult
Learning curve	Easy for small operations	Typically steep
Troubleshooting	Always difficult!	Always difficult!
Transparency for references and calculations	Depends on who creates it	+
Functionality for controlling and auditing changes	_	+
Functionality for complex calculations	_	+
Reporting functionality	_	+

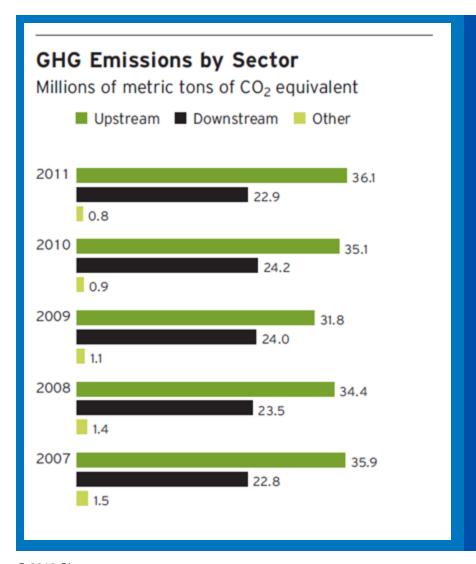
Summary Reports



Recommendations

- Give access to all data, not just final emission results
 - Emission results as well as inputted and intermediate data
- Organized in a way which makes sense to viewers
 - Lumps related information into individual reports with specific purposes
 - Some data will be included in multiple reports
- Lessons Learned
 - Usability: reports should be in a format that allows for further data manipulation and analysis
 - It is useful to have an ad-hoc reporting tool so users can build their own queries for data

Published Data – GHG Emissions by Source


- Published in Chevron's 2011
 Corporate Responsibility Report
- Publically available
 - http://www.chevron.com/globaliss ues/corporateresponsibility/2011/

Notes:

- Increased production, new operations, and increased flaring due to a disruption of operations in Angola drove some of the emissions increases.
- Chevron's GHG emissions data are reported on an equity basis for nearly all businesses in which Chevron has an interest.
- Due to rounding, individual numbers may not sum to totals.

Published Data – GHG Emissions by Sector

- Published in Chevron's 2011
 Corporate Responsibility Report
- Publically available
 - http://www.chevron.com/globaliss ues/corporateresponsibility/2011/

Notes:

- Increased production, new operations, and increased flaring due to a disruption of operations in Angola drove some of the emissions increases.
- Chevron's GHG emissions data are reported on an equity basis for nearly all businesses in which Chevron has an interest.
- Due to rounding, individual numbers may not sum to totals.

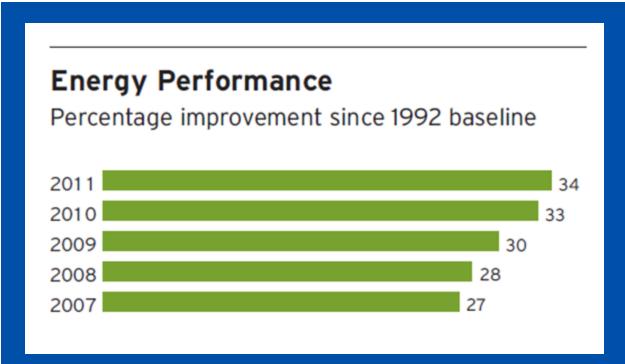
Published Data – Total GHG Emissions by Type

Total GHG Emissions by Type

Millions of metric tons of CO₂ equivalent

			Grid	
	Direct	Indirect	Credits	Net
2011	61.6	-1.8	0.0	59.8
2010	63.1	-2.9	0.0	60.2
2009	60.3	-2.4	-0.9	57.0
2008	62.7	-2.4	-1.0	59.2
2007	63.7	-2.9	-0.5	60.3

Direct - within "fenceline"


Indirect -purchased/sold electricity and steam

Grid Credits – exported electricity which is produced more efficiently than the regional or national grid. No longer accounted starting in 2010

- Published in Chevron's 2011 Corporate Responsibility Report
- Publically available
 - http://www.chevron.com/globalissues/corporateresponsibility/2011/

Published Data – Energy Performance

Chevron uses an energy index to measure energy efficiency improvements across its global operations.

The Chevron Energy
Index is a measure of the
energy intensity of its
operations based on the
estimated improvements of
energy technologies and
operational performance.

- Published in Chevron's 2011 Corporate Responsibility Report
- Publically available
 - http://www.chevron.com/globalissues/corporateresponsibility/2011/

Q & A