

Gas Monetization via Emerging "mini-GTL" Options

GLOBAL METHANE INITIATIVE – Middle East Meeting

Washington, October 2-3, 2012

Dr. Theo H Fleisch

GGFR Study with Final Report in February 2012

GLOBAL GAS FLARE REDUCTION PARTNERSHIP

Associated Gas Utilization via miniGTL

February 2012

Study Lead:

Martyn Howells
Bent Svensson

Study Research:

Theo Fleisch

Time:

1H 2011

Update in February 2012

Available to GGFR members

Major Conclusions

- Large scale GTL technologies are proven and profitable (Shell, Sasol, Methanex, etc)
- A few "miniGTL" technologies are for the 1st time commercially available to reduce global gas flaring and monetize smaller gas volumes
- Most of these technologies are based on proven "syngas" routes and have been demonstrated in pilot plants
- Onshore and Offshore applications are possible
- Economic returns look attractive because of the high value products associated with high crude prices

Why GTL?

- Monetize "stranded" gas (Trinidad, Qatar,...)
- ❖ Add value to gas (gas/oil arbitrage: \$4/MMBTU to \$20/MMBTU in US today)
- Valuable products
 - Synthetic crude oil
 - Clean drop-in fuels (gasoline, diesel)
 - Advanced fuels and chemicals (DME, methanol, etc)

Energy security

- Reduction of imported fuels (1 bcfd/280million m³ gas per day equates to 1MMbpd)
- Domestic production (investments, jobs)

GTL: Gas to Liquids – Broad Product Options

Natural gas requirements

- Methane is the preferred feedstock (separation and sale of condensates and NGL)
- However, C2+ (ethane and higher) can be accommodated with minor modifications if gas fractionation is not feasible
- Poisons such as sulfur and mercury must be removed
- Nitrogen and carbon dioxide are diluents and can be tolerated in moderate concentrations
- Pressure is an advantage since the 1st step reformers run at elevated pressures (>20bar)
- Gas feed rates as steady as possible for 10+ years
- Minimum gas feed rate: 50kscfd

Some historic GTL conversion plants

Large scale GTL plants: economy of scale

Plant	Country	Gas Feed Rate	Product	Production
Shell Bintulu	Malaysia	3.4mm m ³ /d	Diesel+	12,000bpd
Mossgas	South Africa	6.8mm m ³ /d	Diesel+	24,000bpd
Sasol Oryx	Qatar	10mm m ³ /d	Diesel+	35,000bpd
Shell Pearl	Qatar	40mm m ³ /d	Diesel+	140,000bpd
Titan	Trinidad	2.1mm m ³ /d	methanol	2500tpd
Atlas	Trinidad	4.2mm m ³ /d	methanol	5000tpd
Escravos	Nigeria 2013	10mm m ³ /d	Diesel+	35,000bpd
Sasol Karshi Uzbekneftegaz	Uzbekistan (planned)	10.8mm m ³ /d	Diesel+	38,000bpd
SasolTalisman	Canada (planned)	14-28mm m ³ /d	Diesel+	50,000- 100,000bpd
Sasol Louisiana	USA (planned)	23mm m ³ /d	Diesel+	80,000bpd

Challenges with flared gas for mini-GTL

- No economy of scale
 - High capital costs with low financial returns?
- Very remote locations and lack of infrastructure
 - Delivery of bulky equipment
 - Additional costs for utilities
- Gas production profiles (declining with time)
 - Original plant size becomes underutilized
- Local markets for products

Need for small scale, modular, low cost process units with flexible capacity and for readily useable products

Companies developing mini-GTL technologies

1st Resource Group, Inc.

Evaluation of technologies

- Overall technical risks
- Status of technology development
 - Laboratory, pilot plant and demonstration plant status
 - Remaining hurdles
- Overall Commercial readiness (onshore and offshore)
- Size applicability
 - ❖ Small: <1mmscfd (<28,000m³/d)</p>
 - Medium: 1 -10mmscfd (28,000 280,000m³/d)
 - ❖ Large: >10mmscfd (>280,000m³/d)

Overall Risk and Time to Commercialization

SHORT

TIME TO COMMERCIALIZATION

LONG

CompactGTL

- Technology:
 - process intensified mini-channel reactor technology for both the reformer and the FT unit (~/<5mm)</p>
 - Catalyst placed on metal sheet inserts
 - Effective heat transfer

- Product: diesel or waxy syncrude
- Successful 20bpd demonstration plant (Petrobras)
- Numerous commercial feasibility studies
- www.compactgtl.com

Velocys (Oxford Catalysts)

- Technology:
 - Breakthrough micro-channel technology
 - ❖ Reactor channels are <1mm diameter
 - Catalyst coating inside

- Very compact modular design
- Reactor modules can be removed when gas production falls

Velocys: status and path foward

- Commercial development is underway
 - 3 demonstration projects underway (<1MMscfd) in Brazil,
 Austria and the USA
- All GTL steps proven by 2012 (SMR, FT, Hydrocracking)
- Velocys is accepting commercial orders for FT units now (have already sold about 10 FT reactors)
- Rosneft purchased a 100bpd unit for Angarsk refinery, Siberia, converting 10mm m³/y
- Calumet (PA) will build 1000bpd unit
- Multiple feasibility studies underway
- www.velocys.com

GASTECHNO: Overview

- Relatively simple technology:
 - Direct oxidation of methane to methanol (no catalyst, no syngas)
 - Modular, skid mounted design
- Technology proven in 50kscfd (1400 m³/d) demo with good mass and energy balance
- By-products: formalin, ethanol
- ❖ Modules available for sale or lease (~/<30,000m³/d)</p>
- ❖ Basic evaluation and engineering packages (28,000 to 850,000 m³/d)
- www.gastechno.com

OBERON FUELS: Overview

- *TECHNOLOGY
 - Skid mounted DME
 - Modular design
 - Targets are small natural gas and/or biogas sources (<2MMscfd or <50,000m³/d)
 - Markets: local heavy duty diesel fleets converted to DME
- 1st plant to be built in CA in 2013 (feed is methanol)
- ❖ 2nd plant will demonstrate the whole chain from natural gas
- *www.oberonfuels.com

ECONOMICS BALLPARK ESTIMATOR

- Attractive economics: product/feedstock thermal value spread is >3
 - ❖ E.g. gas at \$4/MMBTU and diesel at \$20/MMBTU equals spread of 5

Plant size

❖ 10,000scfd (280m³/d) == 1bpd liquid product

Example: $5MMscfd (140,000m^3/d) == 500bpd$

Capex

- Annual revenue: ~\$17MM (at \$100/barrel and 350 days of operation)
 - ❖ Minus Opex: ~\$3MM
 - Minus gas cost
 - Carbon credits?

Oil-gas spread: past, present and future

GTL economics
works well at oilgas spreads at 3
and above

Conclusions

- The GTC and GTL industries are global and well established
- A few "miniGTL" are now available to reduce global gas flaring and monetize smaller gas volumes
- Most of these technologies are based on proven syngas routes and have been demonstrated in pilot plants
- Offshore applications are possible
- Economics look attractive because of the high value products associated with high crude prices
- Numerous other technologies are under development and some might see commercialization within the next 5 years

Recommendations

- Evaluate mini-GTL technologies as potential new options
- Time is right for commercial applications
 - CompactGTL
 - Velocys
 - Oberon Fuels
 - Gastechno

- The World Bank GGFR Partnership is ready to assist you
 - Martyn Howells: hhowells@worldbank.org
 - Theo Fleisch: theo.fleisch@gmail.com