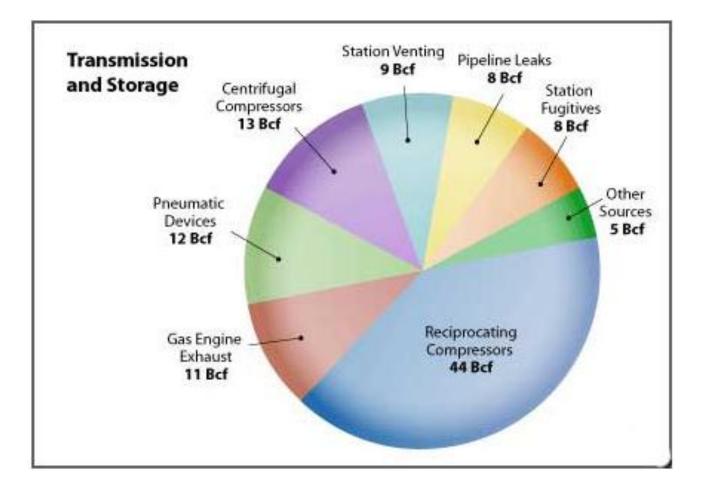
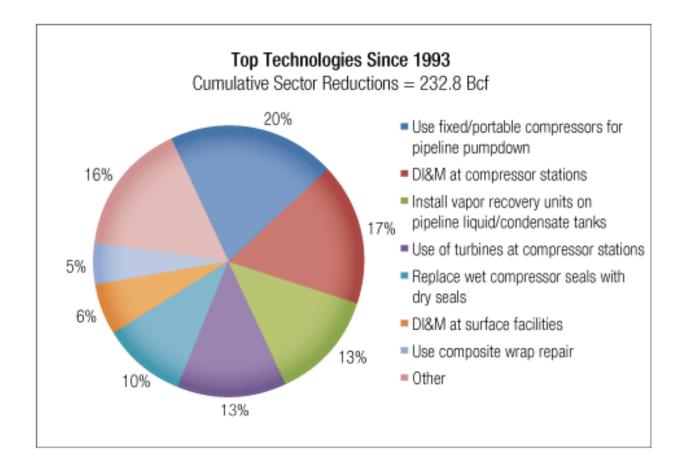
Methane Reductions from Pipeline Maintenance Activities


Thomas Bach Kinder Morgan Inc. Washington, D.C. Oct. 2-3, 2012

U. S. Natural Gas Transmission Systems

- Transmission and Gathering Systems approximately 325,000 miles of pipe ¹
- Approximately 1,800 compressor stations ²
- Over 50,000 reciprocating compressor engines are operated within the U.S.²


- 1 U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration
- 2 U.S. Environmental Protection Agency estimate

Methane Emissions - Natural Gas Sector

<u>Reference: Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2009,</u> <u>USEPA, April, 2011</u>

Gas Transmission Sector Reduction Technologies Since 1993

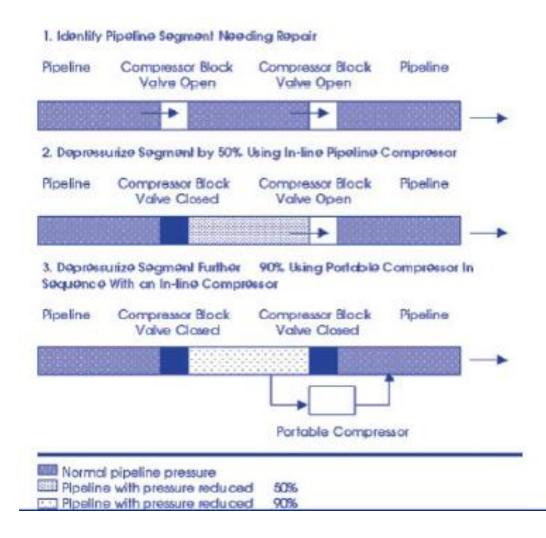
Reference: EPA Natural Gas STAR Program Web Page

Methane Emission Reduction Methodologies

- Under the Natural Gas STAR Program, EPA identifies 10 available reduction methodologies
 - Pipeline Pump-Down: lower pipeline pressure prior to maintenance activities
 - Use fixed or portable compressors
 - Install Composite Wrap for Pipeline Repairs

Pipeline Pump-Down

- Goal: Minimize natural gas blow downs associated with pipeline maintenance activities
- Pipeline Pressure Reduction Methodologies include:
 - Reduce pipeline pressure using downstream takeaway capacity
 - Applicable for non-urgent, scheduled maintenance activities
 - Use fixed compression, typically existing compressor stations
 - Use portable compression, incremental cost for temporary compression


Pipeline Pump-Down Use

- Applicable Maintenance Activities
 - Pipeline Anomaly Repairs, if time allows
 - Hydrostatic Testing
 - Pipeline segment abandonment

Portable Compression

Pipeline Depressurization

Install Composite Wrap for Pipeline Repairs

- Goal: Minimize natural gas blow downs associated with pipeline maintenance activities
- Mechanical sleeves or composite wrap repair methods
- Benefits:
 - Repairs made without taking pipeline out of service
 - Operating pressure reduction may be required, but no gas blow down required

Composite Wrap

- Types:
 - Clock Spring[®] composed of glass fibers and polyester resin
 - Strong Back system water activated, can be used on wet surfaces
 - Armor Plate[®] variety of wrap systems for high/low pressure or temperature applications and underwater applications
 - PermaWrapTM allows detection of previous wrap by inline inspection tools (e.g., smart pigs)

Composite Wrap

1

3

Clock Spring[®]

A Clock Spring composite wrap consists of three parts:

1. A high-strength, unidirectional composite structure of glass fibers and a polymer base;

2. A fast curing, high-performance, two-part adhesive system; and

3. A high compressive-strength, load-transferring filler compound.

Clock Spring[®] Company L.P.

Repair Factors

- Determine whether suitable application
 - Defect type
 - Dent, gouge or corrosion
 - Defect Depth % metal loss
 - Pipeline depth
 - Pipeline diameter and wall thickness
 - Pipe yield strength
 - Length of pipe wall loss or deformation
 - Defect axial length

Mechanical Sleeve or Composite Wrap Repair Evaluation

- Sleeve or Wrap Application is suitable
- Determine repair cost
- Compare to pipeline section replacement cost
- Estimate natural gas savings (volume and cost)
- Repair method based on engineering and economic evaluation

Factors for Determining Project/Repair Costs

- Labor cost
- Material costs
 - Sleeve or composite wrap
 - Replacement pipe
- Equipment cost
 - Backhoe, other equipment
 - Contractor
 - Inspection
 - Temporary/Rental compression
- Indirect Costs
 - Right-of-way damages
 - Permits

Estimating Natural Gas Savings

$$V \text{ natural gas} = \frac{\pi \left(\frac{D}{2}\right)^2 L\left(P\right)}{1,000}$$

Where:

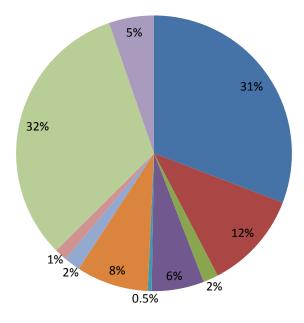
- V_{Natural Gas} = Volume of Natural Gas, mcf
- D = Inside diameter of pipe, feet
- L = Length of pipe, feet
- P = Pipeline Pressure, psia

Example: 10 mile section of 30 inch pipe

$$V = \frac{3.1416 \left(\frac{30 \text{ in}/2}{12 \text{ in}/ft}\right)^2 \left(10 \text{ mi } x \text{ 5,280} \frac{ft}{mi}\right) \frac{(700 \text{ psi} + 14.73 \text{ psi})}{14.73 \text{ psi}}}{14.73 \text{ psi}}$$

- D = 30 inch, nominal
- L = 10 miles
- P = 700 psi

• Natural Gas Savings = 12,576 mcf


Kinder Morgan's Natural Gas Pipeline Operations

- Largest natural gas transporter and storage operator in US
 - Operates approximately 62,000 miles of natural gas pipelines
- Key Assets
 - Texas Intrastate Pipeline Group serving producers and customers in Texas
 - Tennessee Gas Pipeline serving markets from Texas to northeastern US markets (e.g., New York City and Boston)
 - Southern Natural Gas serving southeastern US markets (e.g., Atlanta)
 - Natural Gas Pipeline Company of America serving central and mid-western US markets (e.g., Chicago)
 - El Paso Natural Gas serving southwestern US markets (e.g., Phoenix, Tucson and California)
 - Colorado Interstate Gas, Wyoming Interstate Company and TransColorado Gas Transmission Company serving Rocky Mountain markets
 - Mohave Pipeline Company and the Ruby Pipeline serving California markets

Kinder Morgan's Natural Gas STAR Program Experience

- Kinder Morgan's natural gas pipeline companies have participated in EPA Natural Gas STAR program since 1993
- Since 1993, Kinder Morgan companies have achieved cumulative methane reductions of over 77.3 Bcf
 - Pipeline Pump-down and temporary compression: 23.8 Bcf
 - Mechanical sleeve or Composite wrap: 6.5 Bcf

Kinder Morgan Cumulative Methane Reductions (1993-2010): 77.3 Bcf

- Use compressors pipeline pumpdown (23,848,456 Mcf)
- DI&M: compressor stations (8,914,460 Mcf)

Install electric compressors (1,376,917 Mcf)

- Use of turbines at compressor stations (4,744,894 Mcf)
- Identify and replace high-bleed pneumatic devices (358,692 Mcf) Use composite wrap repair (6,548,531Mcf)
- Replace compressor rod packing systems (1,482,925 Mcf)
- DI&M: surface facilities (1,110,911 Mcf)
- Install VRU on pipeline liquid/condensate tank (24,874,864 Mcf) Other (4,095,016 Mcf)

More Information

- Additional information regarding methane emission reduction technologies is available from EPA's Natural Gas STAR Program Web Page:
- http://www.epa.gov/gasstar/
- Technical Documents are available in Arabic, Chinese, Russian and Spanish