

TECNOLOGIAS PARA O APROVEITAMENTO ENERGÉTICO DO BIOGÁS

Chris Godlove
US Environmental Protection Agency (USEPA)

Riberão Preto, SP 17 de setembro de 2010

Sumário

- Aproveitamento do biogás Visão geral
- Uso Direto BTU médio
- Uso Direto BTU alto
- Geração de Eletricidade
- Cogeração de Energia

Por Que Utilizar O Biogás?

- Fonte local de combustível
- A captura e utilização do biogás são relativamente simples
- Fonte renovável de energia
- Fornecimento constante 24 horas por dia, 7 dias por semana
- Tecnologias confiáveis para a utilização do biogás
- Recurso energético que, se não aproveitado, seria desperdiçado
- Ajuda a reduzir emissões de poluentes para a atmosfera

Benefícios de um Projeto de Aproveitamento de Biogás

- Destrói o metano e outros compostos orgânicos contídos no LFG
- Substitui o uso de recursos não-renováveis
- Benefícios potenciais para o aterro:
 - Fonte adicional de renda
 - Desenvolvimento econômico local
- Benefícios potenciais para o usuário final:
 - Custos reduzidos de combustível
 - Ganho através do uso de fontes renováveis de energia
 - Apoia estratégia de ser uma empresa "verde" e/ou sustentável

Benefícios de um Projeto de Aproveitamento de Biogás

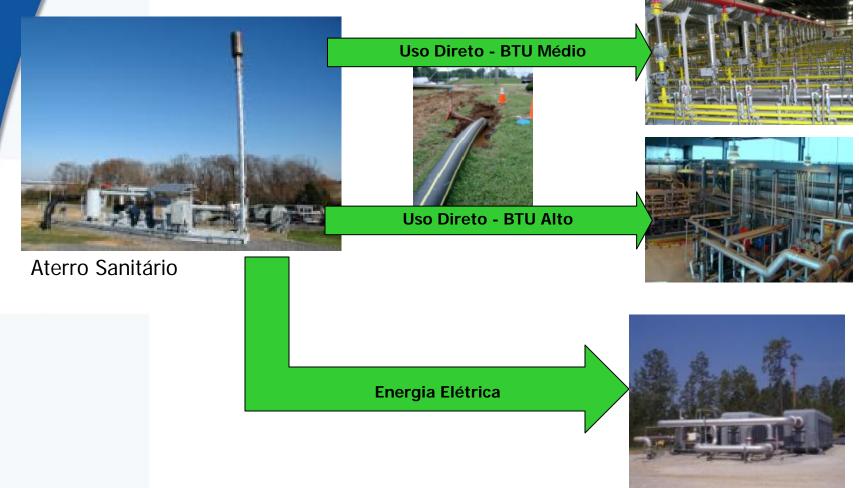
- Cada megawatt de energia gerada ou a utilização direta média de 615 m³/h é equivalente a:
 - Um plantio anual de 4.900 hectares de árvores
 - Eliminação anual das emissões de CO₂ de 9.000 automóveis
 - Prevenção anual do uso de 99.000 barris de petróleo
 - Prevenção anual do uso de 200 vagões de carvão
 - Fornecimento de eletricidade a 650 casas por ano

O Biogás já foi utilizado na produção de...

- Flores e tomates
- Cerâmica e vidro
- Carros e caminhões
- Farmacêuticos
- Tijolos e concreto
- Aço
- Suco de laranja e maça
- Biodiesel, ethanol e GNL
- Bens de consumo e embalagens
- Fibra de vidro, nylon e papel
- Brim

- Eletrônicos
- Químicos
- Chocolate
- Secagem do lodo proveniente de esgoto sanitário
- Produtos à base de soja
- Tapete
- Calor infravermelho
- Energia verde
- Economia de custos
- Aumento da sustentabilidade

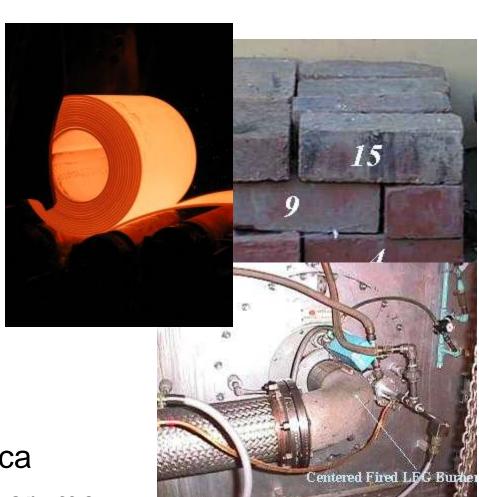
Quem utiliza o Biogás?



Tipos de Projetos

Opções de Utilização de Biogás

- Combustível com BTU médio. O biogás bruto ou com pouco tratamento tem uso comercial, institucional e industrial para o abastecimento de aquecedores de água, fornos, secadores de agregados e geradores convencionais de eletricadade. Esse biogás contém, tipicamente, 50% de metano.
 - Evaporação do Chorume. O biogás é utilizado como combustível na evaporação do chorume, reduzindo os custos do tratamento.
- Combustível com BTU alto. O biogás é purificado a níveis de 90 a 99 por cento de metano, através da remoção do dióxido de carbono. Uso final como gás natural ou gás natural comprimido.
- Energia Elétrica. O biogás é utilizado como combustível de motores de combustão interna e de turbinas. A energia produzida é injetada no grid.


Utilização do Biogás

Uso Direto: Combustível com BTU Médio

Utilização Direta do Biogás

- Calderas
- Aplicações térmicas direta
 - Forno
- Aplicações inovadoras
 - Estufas
 - AquecedoresInfravermelhos
 - Fornos de cerâmica
 - Evaporação do chorume

Utilização Direta do Biogás

- Mais de 100 projetos nos E.U.A.
- Comprimento do gasoduto varia de 0,6 a 15 km
 - < 5 km tem major viabilidade</p>
- O biogás é utilizado por um usuário fora do aterro sanitário
- Canalização do biogás para um usuário próximo para uso em caldera, forno ou algum outro processo
- Excelente possibilidade, se um usuário final se encontra nas proximidades
- Pode tirar vantagem do preço de distribuição do GN

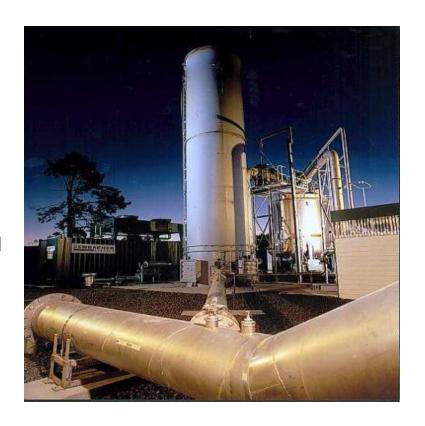
Aterro de Jardim Gramacho, Rio de Janeiro – Em Desenvolvimento

- Transporte do biogás purificado do Aterro Metropolitano de Jardim Gramacho até a Refinaria de Duque de Caxias
- Substituirá parte do uso de gás natural por 20 anos
- 6 km de dutos subterrâneos
- Aproximadamente 200 mil m³/dia de biogás
- Início da operação prevista: 2011

Fonte: Google Earth

 Parte do dinheiro será depositado em fundo social de auxílio a 3 mil catadores e seus familiares, além da recuperação de manguezais.

Estufas


- Utilizam tanto a energia elétrica quanto o calor
- O dióxido de carbono pode ser utilizado para melhorar o crescimento das plantas
- 6 projetos em estufas estão em operação nos E.U.A.

Evaporação do Chorume

- Utiliza o biogás no tratamento do chorume
- Tecnologia comercialmente disponível
- Unidades operando em diversas partes do mundo (e.g. CTR Nova Iguaçu, Rio de Janeiro)
- 20 unidades operando nos E.U.A.

Utilização do Biogás

Uso Direto: Combustível com BTU Alto

Processamento do Biogás para Combustível de BTU Alto

Tecnologia

- Primero passo: remoção do dióxido de carbono
- O biogás é purificado de 50% para 90%- 99% de metano

Vantagens

- Injeção do produto tratado em gasoduto
- Metano pode ser usado como matéria-prima
- Redução do uso de combustíveis fósseis

- Deve cumprir com os padrões rígidos referentes a gasodutos
- Tecnologia cara
- Economicamente viável somente em grande escala

Combustível com BTU Alto – Montauk Energy - Valley & Monroeville, PA

- Inicio das operações em 2006
- Conversão do biogás para combustível com BTU alto, qualidade do gasoduto (duas plantas)
 - Tecnologia de membranas
- Biogás injetado em:
 - Gasoduto de baixa pressão para distribuição local
 - Gasoduto de alta pressão para distribuição nacional

Fotos: cortesia da Montauk Energy

Biogás como Combustível Vehicular

- Automóveis e equipamentos utilizados em aterros sanitários abastecidos por gás Natural Vehicular (GNV)
- Ônibus abastecidos por GNV
- Metanol para biodiesel

Utilização do Biogás

Geração de Energia Elétrica

Geração de Energia Elétrica

- Tipo de projeto mais comum nos E.U.A
 - Nos E.U.A, existe um total de aproximadamente 1100 MW de capacidade em mais de 250 projetos
- Venda de Eletricidade para
 - Injeção na rede
 - Cooperativas de indústrias qualificadas
 - Usuários situados próximos ao aterro
 - Auto generação ou medição líquida
- Tamanho médio de um projeto: 4 MW (500 kW - 50 MW)

Geração de Energia Elétrica

Motores de Combustão Interna

Turbinas

Microturbinas

- Novas tecnologias
 - Célula combustível

Motor de Combustão Interna

Capacidade: 350 kW - 3 MW

Vantagens

- Tecnologia comprovada e confiável
- Eficiente
- Disponibilidade alta > 92%
- Não requer pré-tratamento do biogás

- Maiores custos de O&M
- Maiores emissões de NOx e CO

Turbinas: gás, Vapor e Ciclo Combinado

- Capacidade: 1- 6 MW
- Vantagens
 - Resistente a corrosão
 - Custo baixo de O&M
 - Tamanho pequeno
 - Emissões mais baixas de NOx

- Ineficiente com carga parcial
- Carga parasitária alta devido às exigências da alta compressão do gás
- Requer pré-tratamento do biogás

Microturbinas

Capacidade: 30-200 kW

Vantagens

- Emissões baixas
- Capacidade de utilizar combustíveis diversos
- Leve/tamanho pequeno
- Custos baixos de manuteção

- Ineficiente
- Custo alto de investimento \$/kW
- Pode requer pré-tratamento do combustível

Geração de Eletricidade, Aterro Bandeirantes, SP

- Inaugurada em 2003, é a primeira usina no Brasil
- Uma das maiores usinas de energia a partir de biogás do mundo
- 12.000 m³/hr de biogás
- Capacidade: 24 motores, 22 MW suficiente para abastecer uma cidade de 400 mil habitantes
- Fornece energia às unidades administrativas e comercias do Unibanco e 20 mil famílias agora tem energia confiável

Geração de Eletricidade, Aterro São João, SP

- Inaugurada em 2008
- Capacidade: 20 MW suficiente para abastecer uma cidade de 400 mil habitantes
- 12.000 18.000 m³/hr de biogás
- 16 motores
- Metade dos créditos certificados pela ONU pertece à Prefeitura e metade à empresa Biogás

Utilização do Biogás

Cogeração

Cogeração

- Indústrias Grandes
- Aplicações em Microturbinas

Cogeração

Vantagens

- Maior eficiência de recuperação energética através da recuperação do calor residual - até 80%
- Sistemas especializados em cogeração estão disponíveis
- Flexível água quente ou geração de vapor a partir do calor recuperado

Desvantagens

 Maiores custos de capital para os sistemas de recuperação

Cogeração BMW – South Carolina

- 15 km de dutos
- 4 turbinas a gás adaptadas para queimar biogás
- 4,8 MW = 25% da demanda de energia da planta
- 72 MMBtu/hr = 80% da demanda térmica da planta (água quente, aquecimento, refrigeração)
- A BMW economiza pelo menos \$1 milhão/ano

Utilização do Biogás

Custo

Custo (2008)

Uso Direto (fluxo de biogás = 1662 m³/hr)

Componente	Custo		
Custo dos equipamentos instalados (filtro,	585(x) + R\$1,350,000;		
compressor e sistema de desidratação)	$x = ft^3/min$	R\$1,922,072	
Custo do gasoduto (5 km de extenção)	R\$594.000 / milha	R\$1,782,000	
Custo Total de Investimento		R\$ 3.704.072	
Custo anual de operação e manutenção do filtro,	90000*(x/700) ^{0.2} ;		
compressor, dutos e sistema de desidratação	x = capacidade projetado		
(excluindo energia)	do sistema em ft ³ /min	R\$98,629	

Combustível com BTU Alto (fluxo de biogás = 1662 m³/hr)

Componente	Custo	
Custo dos equipamentos instalados (compressor,	(x/2000) ^{0.63} * R\$15.120.000;	
separadores e secadores de gás)	$x = ft^3/min$	R\$9.633.600
Custo do gasoduto (5 km de extenção)	R\$594.000 / milha	R\$1,782,000
Custo Total de Investimento		R\$ 11.415.600
Custo anual de operação e manutenção do		
compressor e dos separadores e secadores de	0,40 * x/1000;	
gás (excluindo energia)	$x = ft^3$	R\$180.441

Custo (2008)

Motores – Usina com capacidade de 3,2 MW

Componente	Custo		
Custo dos equipamentos instalados			
(tratamento/compressão do gás, motor/gerador,	R\$2.880/ kW		
preparação do local, alojamento)	instalado	R\$9.216.000	
	R\$450.000/		
Custo do equipamento de interconexão com a rede	sistema	R\$450.000	
Custo Total de Investimento		R\$ 9.666.000	
Custo anual de operação e manutenção do equipamento			
de tratamento/compressão de gás e motor/gerador	R\$0,036/		
(excluindo energia)	kWh gerado	R\$793.336	

Utilização do Biogás

Comercialização de Energia

Comercialização de Energia

- Crise energética de 2001
- Novo modelo do setor elétrico brasileiro, anunciado em 2003, estabeleceu dois tipos de mercados
 - Ambiente de Contratação Regulada (ACR):
 Contrato entre agentes de geração e distribuição de energia elétrica com preço fixo (estipulados por leilões)
 - Ambiente de Contratação Livre (ACL): Contrato entre agentes de geração, comercialização, importadores e exportadores de energia, e consumidores livres (demanda mínima de 3MW)

Energia Renovável

- PROEOLICA em 2002
- PROINFA em 2002
 - 1ª Fase: Contratação de 3.300 MW de energia renovável no Sistema Interligado Nacional (SIN) por 20 anos
 - 2ª Fase: Assegurar que 10% da demanda energética venha de fontes renováveis, leilões de energia

Energia Renovável

- Consumidores Especias (demanda mínima de 500 kW) passaram a ter direito de adquirir energia a partir de fontes alternativas dentro do ACL
 - Empreendimentos com potência instalada <= 1.000 kW
 - Fontes renováveis (PCHs, eólica, biomassa ou solar) com potência instalada <= 50.000 kW

Energia Renovável

- 50% de redução da tarifa de uso dos sistemas de transmissão e distribuição para determinadas fontes de energia renovável
- 100% de redução da tarifa de uso dos sistemas de transmissão e distribuição quando 50% ou mais do insumo energético for resíduos sólidos urbanos e/ou biogás de aterro sanitário
- Usina perde desconto se comprar energia convencional em montante superior a 49% de sua Garantia Física

Opções de Venda de Eletricidade

- 1. Venda no Mercado Spot (à vista)
- Contrato com distribuidor de energia elétrica leilões (ACR)
- 3. Contrato com consumidor livre (ACL)
- 4. Leilões de energia renovável

Preço da Energia Elétrica (CCEE)

Preço Médio da CCEE (R\$/MWh)				
840 -	Submercado			
Mês	SE/CO	S	NE	N
03/2010	27,74	27,74	30,19	27,56
02/2010	13,85	13,85	16,06	13,85
01/2010	12,91	12,91	12,91	12,91
12/2009	16,31	16,31	16,31	16,31
11/2009	16,31	16,31	16,31	16,31
10/2009	16,31	16,31	16,31	16,31
09/2009	16,31	16,31	16,31	16,31
08/2009	16,31	16,31	16,31	16,31
07/2009	30,43	30,43	25,55	25,55
06/2009	40,84	40,84	30,00	23,14
05/2009	39,00	39,10	30,17	16,31
04/2009	46,46	48,73	27,79	16,31
03/2009	90,87	91,28	84,25	24,96
02/2009	52,08	66,15	27,41	27,41
01/2009	83,64	83,66	77,77	77,82
12/2008	96,97	96,93	96,97	96,97
11/2008	106,14	93,77	106,14	106,14
10/2008	92,43	92,17	92,43	92,43
09/2008	109,93	109,40	109,91	109,93
08/2008	102,79	101,21	102,79	102,79
07/2008	108,42	108,42	108,42	108,42
06/2008	76,20	76,20	75,34	75,34
05/2008	34,18	34,19	34,42	27,61
04/2008	68,80	72,12	71,92	50,97
03/2008	124,70	127,41	123,24	117,67
02/2008	200,42	200,65	214,37	200,43
01/2008	502,45	502,45	497,61	502,45

Preço Médio da CCEE (R\$/MWh)				
Mês	Submercado			
Mes	SE/CO	S	NE	N
12/2007	204,93	204,93	204,93 204,93	
11/2007	185,11	185,11 185,11		185,11
10/2007	198,13	198,13	197,45	198,13
09/2007	149,53	149,80	149,11	149,53
08/2007	39,27	36,13	45,81	44,36
07/2007	122,59	122,19	118,94	122,87
06/2007	97,15	59,42	97,19	97,35
05/2007	59,96	23,48	53,37	53,37
04/2007	49,36	49,05	28,07	24,25
03/2007	17,59	17,59	17,59	17,59
02/2007	17,59	17,59	17,59	17,59
01/2007	22,62	26,28	17,59	17,59
12/2006	58,75	59,18 17,58		45,23
11/2006	80,82	80,82 24,40		80,82
10/2006	92,42	92,42	46,25	92,42
09/2006	123,88	123,88	68,56	123,88
08/2006	104,98	105,19	51,94	104,98
07/2006	90,90	91,44	30,61	90,90
06/2006	67,89	70,01	23,44	44,84
05/2006	51,91	52,51	19,79	16,97
04/2006	20,87	21,06	16,92	16,92
03/2006	28,56	42,67	36,10	18,94
02/2006	58,02	63,63	37,62	29,20
01/2006	28,64	28,78	19,14	19,14
12/2005	19,20	19,19	18,40	19,20
11/2005	35,73	24,17	19,79	35,73
10/2005	43,12	18,83	18,86	43,12

 Preço de Liquidação das Diferenças (PLD) - preço pelo qual é valorada a energia comercializada no Mercado de Curto Prazo (Spot)

Preço da Energia Renovável

 1º Leilão Energia Renovável em 2007, geração para 2010

Fonte	Potência	Energia	Preço	
Biomassa (bagaço de cana-de-açúcar)	511,9 MW	115 MW médios	R\$ 138,85 /MWh	
Biomassa (criadouros avícolas)	30 MW	25 MW médios	114 130,0371111411	
PCH	96,74 MW	46 MW médios	R\$ 134,99/MWh	
Total Geral	638,64 MW	186 MW médios	R\$ 137,32 /MWh	

 1º Leilão Eólica em 2009 - contratação de 1.805,7 MW a um preço médio de venda de R\$ 148,39/MWh.

Tarifas Médias por Classe de Consumo e Região (R\$/MWh)

Novembro 2009 (ANEEL)

Classe de Consumo/Região	Centro Oeste	Nordeste	Norte	Sudeste	Sul
Residencial	293,35	284,18	307,14	307,24	286,04
Industrial	219,18	220,84	247,09	250,64	224,29
Comercial, Serviços e Outras	278,30	301,18	318,87	287,27	263,74
Rural	207,86	214,60	234,39	205,36	170,10
Poder Público	285,75	329,04	344,51	302,84	287,43
lluminação Pública	158,71	174,93	178,22	166,64	147,09
Serviço Público	185,19	205,29	214,80	220,14	143,06
Consumo Próprio	302,63	316,25	325,94	301,91	264,74
Rural Aquicultor	240,98	200,37	250,61	195,21	78,76
Rural Irrigante	205,78	138,95	228,84	223,24	145,40
Totais por Região	258,21	259,44	288,45	277,09	241,51

Brasil	
	298,69
	237,06
	286,17
	195,38
	308,81
	164,67
	203,30
	302,65
	191,59
	165,83
	•

Perguntas

Jim Michelsen <u>imichelsen@scsengineers.com</u>

Perguntas?

www.methanetomarkets.org www.epa.gov/lmop

Chris Godlove

U.S. EPA - LMOP

Programa de Divulgação do Metano de Aterros

Tel: +1-202-343-9795

Email: Godlove.chris@epa.gov

Jim Michelsen

SCS Engineers

Tel: +1-703-471-6150

Email: jmichelsen@scsengineers.com

Eustáquio Vasconcelos

SCAI - Belo Horizonte

Tel: (31) 3261-7255

Email: scai@scaiautomacao.com.br

