U.S. Perspectives on Global Opportunities and Challenges for Landfill Methane Use

Alexi Panehal U.S. Agency for International Development Brian Guzzone

U.S. Environmental Protection Agency Landfill Methane Outreach Program (LMOP)

Methane to Markets Ministerial Meeting Washington, DC - 15 November, 2004

Why Does the U.S. Govt. Care About Global Landfill Methane Emissions?

- Landfill methane is a potent heat-trapping gas and it's global.
- Landfills are the third largest human-made source of methane in the world (and rising).
- Global emissions will increase as countries improve landfilling practices.
- LFG energy projects reduce global methane emissions and local air pollution, and create jobs, revenues, and cost savings.
- U.S. ratified United Nations Framework Convention on Climate Change and launched Methane to Markets Partnership (July 2004).

Global Human-Made CH₄ Budget by Source in 2000

Total emissions in 2000 = 5,933 MtCO2e

Source: US EPA

Landfill Gas Energy: Advantages

- Combustion destroys methane and other organic compounds in LFG.
- Offsets use of nonrenewable resources (coal, oil, gas) reducing emissions of: SO₂, NO_x, PM, and CO₂
- LFG is a recognized renewable energy resource.
- LFG projects have on-line availability bover 90%.
- Serves as the "baseload renewable" for many utilities.
- LFG is among the most cost competitive renewable resources available (US\$0.04 0.06/kW).
- LFG can act as a long-term price and volatility hedge against fossil fuels.

Status of LFG Projects and Candidate Landfills (U.S.)

Diversity of LFG Project Types

Antioch Community High School (Illinois)

- Landfill former hazardous waste site
- 12 microturbines with 360 kW capacity and heat for pool
- School expects to save \$100,000 annually.

EnergyXchange (North Carolina)

- Business incubator for local artisans (glassblowing and ceramic kiln)
- Greenhouses and aquaculture
- Saving \$1,000,000 annually
- Monterrey, Mexico
 - First LFG energy project in Mexico
 - 7 MW of electricity for city transportation and lighting

Look Who's Using Landfill Gas

From innovation to results.

LFG Policy Drivers in the U.S.

Regulation

- RCRA requirements for landfills
- Air emission regulations for landfills and LFG (e.g., NSPS, MACT)
- Federal and state incentives (e.g.,tax credits, low interest loans, grants)
- Demand for renewable energy (state renewable energy standards, green power, RECs)

Global Landfill Methane Emissions Trends

Industrialized Nations Declining

- Increased LFG regulation
- Increased recycling of organics/paper
- Increased LFG utilization (>1000 worldwide)
- Developing Nations Sharply Increasing
 - Shift from open dumps to sanitary/engineered landfills
 - Increased MSW generation and disposal
 - Lack of LFG regulation and recycling

Challenge: Dumps vs. Sanitary Landfills

- Lack of information on sanitary landfill design, implementation, management, and how to integrate landfill methane capture
- High organics (e.g., food)
- Lack of environmental controls (e.g., air, water & public health impacts)

Challenge: Political Constraints

- Solid waste and landfill management a low budget priority for cities
- Landfill management and methane recovery not a priority for central governments
- Municipal investment needs are not a high priority on the central governments capital investment plan, and munis. lack the funds to finance for themselves this investment

Challenge: Technological Constraints

- Lack of municipal manager understanding of potential for methane recovery and use
- Landfills often physically distant from potential methane clients
- Landfills of medium/small cities may not generate enough garbage to produce enough methane
- Investment in small scale methane production may not attract investors

Challenge: Technological Constraints

- Increase in composting decreases potential methane production
- Projected changes in consumption habits (e.g., increase in plastic bags)
- Translation and adaptation of developed country models (e.g., methane emissions) to developing world

Challenge: Financial Constraints

- Scarcity of Investment Capital
 - Multilateral banks constrained in lending to cities without a sovereign guarantee
 - Domestic capital markets are in a nascent stage of development
- Methane/landfill revenue stream may be insufficient to repay investment with a revenue backed bond, and general obligation bonds not yet be common/marketable in the developing world
- Paying for feasibility studies
- Lack of financial institution understanding of methane projects

Challenge: Managerial Constraints

- Limited municipal capacity to develop bankable projects
- Limited in-country expertise to build and operate sanitary landfills and methane recovery projects
- Limited ability to assess methane potential
- Limited municipal ability to collect and properly dispose of waste

Current Achievements & Near-Term Opportunities

- Track Record of Operating Projects, mainly in developed countries (~1100 worldwide)
- New Projects in Developing Countries (e.g., Nanjing, China; Monterrey, Mexico)
- Near-Term Potential CDM Projects (e.g., Asia, Latin America)
 70 kW Microturbine
- Consolidation of small open dumps to regional disposal sites
- Emerging LFG technologies showing promise for developing countries

Landfill Methane Capture and Use Opportunities

U.S.G. Involvement in Landfill Methane

U.S.G. LFG Project Assessment and Training Tools

- International Landfill Database
- International LFG Model (generation and recovery)
- Feasibility Assessments
- Technical Training

International Solid Waste Database The International Solid Waste Database was designed and developed by the U.S. Environmental Protection Agency (EPA) to address the lack of a centralized and comprehensive collection of data on solid waste generation and management practices in developing countries. Learn More >>>

Userl	ame: [1
2012	(2000)			
Pas	sword:			
	Lo	ain	Ĕ.	

For More Information...

www.epa.gov/methane/international

Brian Guzzone (U.S.EPA)
guzzone.brian@epa.gov
+1.202.343.9248
Alexi Panehal (U.S.AID)
apanehal@usaid.gov
+1.202.712.5624

