

## Feasible Options for Using CMM Recovered from Songzao Coal and Electricity Company Mines

Presented by,

Raymond C. Pilcher

President, Raven Ridge Resources, Incorporated

Partnership-wide and Steering Committee Meeting

Monterrey, Mexico





#### Acknowledgements and Appreciation

- Methane to Markets and USEPA for funding and support
- Management and technical staff of the Chongqing Energy Investment Group (CQEIG) and its subsidiary, Songzao Coal and Electricity Company (SCEC).
- Team members from RRR staff and outside experts





#### **Outline**

- Background
- II. Geologic and Physiographic Setting
- **III. Market Conditions**
- IV. Trends in Gas and Coal Production
- V. Production Forecasts End Use Options, and Economic Modeling
- VI. Conclusions





#### I. BACKGROUND





## Background

- Basic project information initially gathered in summer of 2007 for two opportunities exhibited at the December 2007 Methane to Markets Partnership Expo
  - Liquefied Natural Gas (drained methane) project
  - VAM project
- Subsequently proposed as a candidate for one of three feasibilities studies conducted at three coal mines in China
- Project was identified as a Methane to Markets sponsored activity and is being tracked and supported as a Methane to Markets Project.





## Feasibility Study Approach

- Submitted detailed questionnaire requesting monthly coal production, drained gas production and VAM data for prior 3 years.
- Met with mine management and technical staff and corporate mangers of CQEIG and SCEC.
   Visited each mine and potential construction sites.
- Conducted detailed review of prior end use options analysis provided to SCEC by the Chongqing Coal Mine Design Institute.





## Feasibility Study Approach (continued)

- Conducted market analysis, gathered costs for equipment and contruction.
- Drafted prefeasibility study
- Reported results to CQEIG and SCEC upper management
- Management chose best end use option(s) and RRR finalized conceptual design and costing
- Working with recently revised economic analysis and drafting final report





#### Challenges and Considerations

- Songzao coal basin is remote and located in mountainous terrain. Slopes are steep
- SCEC mining complex extends ~25 km along the length of the basin. Six separate mines are producing and new mine construction is underway
- Population is concentrated near mining development and roads connect mines along drainages
- Prime agricultural development neighbors mining in south and is important to local economy. Conflicts may arise over land use





#### II. PHYSIOGRAPHIC AND GEOLOGIC SETTING





# Location of Songzao Coal and Electricity Company Coal Mines









## Geologic Overlay on LANDSAT 7 Image







#### **III. MARKET CONDITIONS**





#### Market and Economic Considerations 13

- Existing gas gathering and transportation infrastructure is limited; but LNG sales price are relatively high
- Local residential and commercial market for gas is limited, best markets are distant; Chongqing is closest, but markets in southeast China are strong.
- Local electricity market, primarily mine use and residential are limited; electricity sales prices are low
- Regional market for electricity is complicated by dispatch order and driven by low avoided cost of hydropower and large coal fired plants

















## Liquefied Natural Gas Plants in China







#### IV. TRENDS IN GAS AND COAL PRODUCTION





- SCEC is expanding coal operation in the Songzao basin at six active mines and one under construction
- Plans are underway to increase drained gas concentration and volume
- Coal production may increase to nearly 9 million tons per annum over the next 10 years
- Gas production may increase to over 300 million cubic meters per annum





## Coal, Drained Gas, and VAM Production SCEC Mines Years 2005-2007







#### Variability of Concentration of Methane in Drained Gas and VAM







#### Coal Production and Drained Gas







## V. PRODUCTION FORECASTS, END USE OPTIONS, AND ECONOMIC MODELING



#### Input Probability Distributions for Forecasting Gas Available for New Project End Use

- Coal production (based on plans for expansion)
- Gas drained per tonne of coal mined
- Gas concentration
- VAM emitted
- VAM concentration
- Ratio of gas drained to VAM emitted (drainage efficiency)
- Gas Used at CMM power facilities
- Residential and Commercial Use (metered and unmetered)





### Metered Residential









#### **Unmetered Residential Use**







#### > Forecast of Coal, Gas Production, and Use

**Methane to Markets** 









#### Forecast of CMM Available for Project Use







## **End Use Options Examined**

- Power Generation Only
- LNG Only
- Optimized mix of LNG and power production





## Overview of Terrain and Land Use









## **LNG Option**







## **Optimized Scheme**





#### Models are Used to Simulate Coal Production Increases and Forecast Gas Availability







## **Economic Modeling**

- Probabilistic forecasts of unused gas production for each mine is aggregated to determine probabilistic forecasts of gas available for each end use option
- Ranges of numbers are used to estimate equipment and construction capital, and operating costs
- Taxes and incentives are incorporated
- Revenues for CERs are estimated
- Economic performance is calculated with and without CER revenue





# Optimized Project Scenarios at Forecasted Gas 34 Production Probability Thresholds

| Probability<br>Threshold | Installation Completed               | 2011           | 2015 |
|--------------------------|--------------------------------------|----------------|------|
| 06d                      | LNG Plant Installed Mm <sup>3</sup>  | 80             | 40   |
|                          | PowerGen Installed MW                | 21.4           |      |
|                          | Emissions Reduced tCO <sub>2</sub> e | 26,816,230     |      |
|                          | Total CAPEX                          | \$ 163,450,931 |      |
| p50                      | LNG Plant Installed Mm <sup>3</sup>  | 120            | 40   |
|                          | PowerGen Installed MW                | 19.9           |      |
|                          | Emissions Reduced tCO <sub>2</sub> e | 40,775,118     |      |
|                          | Total CAPEX                          | \$ 183,317,063 |      |
| p10                      | LNG Plant Installed Mm <sup>3</sup>  | 200            | 50   |
|                          | PowerGen Installed MW                | 21.4           |      |
|                          | Emissions Reduced tCO <sub>2</sub> e | 61,705,954     |      |
|                          | Total CAPEX                          | \$ 210,481,063 |      |





#### Probabilistic NPV Forecast Matrix







## Probabilistic IRR Forecast Matrix







#### Indicative Sensitivity Analysis

# Contributions to Uncertainty of Future Gas Production



# Contributions to Uncertainty of

#### **Economic Performance**







### Uncertainty of Economic Performance 38

#### **Contribution of Carbon Credits to Uncertainty of** IRR



#### **Contribution of Carbon** Credits to Uncertainty of **Project NPV**







#### Components of Uncertainty on Economic Performance of Project at p50 Gas Production

- Total CAPEX for p50 project is \$183 million USD
- Project IRR including revenue from CERs (\$13.00) and VERs (\$6.50) is 21.3%
- Without VERs the IRR is 13.6%
- Without CERs the IRR is 5.35%
- The post 2012 impact of the carbon market is significant
- Gas price rationalization is more significant





#### **VI. CONCLUSIONS**





#### Summary of Results

- For 15 year life of project and p50 gas production forecast :
- 40.1 million tonnes of CO<sub>2</sub>e emission reduction average 3 million tonnes per annum after 2015 (emissions reduction are less than 2 million tonnes CO<sub>2</sub>e until full production is achieved and equipment is installed)
- Range in investment from \$163.4 to 210.4 million USD





#### Summary of Results, continued

- Project economic performance is most sensitive to gas sales price.
- IRR without CER revenues (2011 and 2012) is negative for power generation and LNG options, but reduced and positive for optimized mix.
- The project NPV is sensitive to post 2012 emissions reductions market. VERs or CERs are important to overall economic performance.
- Project easily demonstrates financial additionality under present economic conditions in China.





## ¡Gracias!





