

SUMMARY OF INDIA FINDINGS TO DATE December 2010

1. THE GLOBAL METHANE INITIATIVE

The Global Methane Initiative (GMI) is a partnership to reduce global methane emissions in four main sectors: agriculture, landfills, oil and gas and coal mines. In support of GMI, the U.S. Environmental Protection Agency is conducting livestock and agro-industry resource assessments (RAs). The objective is to identify and characterize the potential for incorporating anaerobic digestion into waste management systems to reduce methane emissions and provide a renewable source of energy. These RAs, together with feasibility studies and demonstration projects of appropriate technologies, will serve as the basis for future country-level policy planning and development of an agricultural methane implementation plan to replicate technologies in targeted sectors.

Sector	Description of the sector and assumptions	Direct emissions ¹		Indirect ²	Total
		CH ₄ (MT CH₄ / yr)	CO2e (MT CO2e / yr)	Fuel replacement (MT CO2e / yr)	Direct + Indirect (MT CO ₂ e / yr)
Dairy farms (milk production)	103 million dairy cattle, 80 million dairy buffalos, considered only medium to large farms (32%)	173,455	3,642,560	686,054	4,328,614
Distilleries	3.25 MMT of ethanol; Assumed only 5% use open lagoons, COD: 110 kg/m ³ ; WW: 12 m ³ /MT	38,729	813,313	153,183	966,495
Dairy plants (milk processing)	109 MMT milk, 35% processed, all have ETP with methane recovery (no baseline emissions) and flaring (potential for emissions offsets), COD: 2.7 kg/m ³ , WW: 7 m ³ /MT	N/A	N/A	456,297	456,297
Sugarcane mills	348 MMT of sugarcane; Assumed only 5% use open lagoons, COD: 3.2 kg/m ³ ; WW: 11 m ³ /MT	6,915	145,223	27,352	172,575
Fruit and vegetables	79 MMT vegetables, 63 MMT fruits, Assumed only 9% use lagoons, COD: 5 kg/m ³ , WW: 20 m ³ /MT	5,096	107,018	20,156	127,174
Corn and tapioca starch	660,000 MT of corn starch, 100,000 MT tapioca starch, assumed 14% (corn) and 17% (tapioca) use open lagoons, COD (kg/m ³): 15 (corn), 6 (tapioca); WW (m ³ /MT): 8 (corn), 30 (tapioca)	4,858	102,016	19,214	121,230
Total		229,054	4,810,130	905,959	5,716,089

2. CURRENT INDIA FINDINGS TO DATE (India RA, 2010).

MMT: Million metric tons; COD: Chemical Oxygen Demand; WW: Wastewater generation; ETP: Effluent Treatment Plant

¹. Baseline methane emissions due to the current waste management system; assumes CO₂ GWP is 21

². Indirect emissions reduction potential: the emissions that would be reduced by fuel replacement through the use of biogas

3. BENEFITS

Anaerobic digestion provides the following benefits:

1) Water, Greenhouse Gases, and Renewable Energy: Stabilization of organic wastes and reduction of methane emissions, via combustion of captured methane (biogas) in either a flare or for use as a renewable energy resource. This improved waste management practice also improves kitchen air quality when gas is used as a cook fuel that replaces conventional woody biomass as a fuel source.

2) Sanitation and Human Health: Eliminates fly attracting odors thereby reducing this disease vector while also directly reducing pathogen levels in the treated wastewater.

3) *Economics*: Off-setting of purchased fossil fuel energy as methane can be used as a fuel for electricity generation, and/or direct heat, or as a cooking fuel. In addition, many such facilities have availed themselves of carbon credits, further improving the economics of anaerobic digestion.