
# Biogas Recovery in the Wastewater Sector will begin shortly...

All attendees will be in listen-only mode.

A copy of the presentations and a recording of today's meeting will be available to view on the GMI website in the coming weeks: http://globalmethane.org

Please type your questions and comments into the Questions box on your GoTo control panel. Staff will answer questions as time allows.



# **Global Methane Initiative**

# Biogas Recovery in the Wastewater Sector

23 November 2015



# Agenda

- Introduction
  - Chris Godlove, U.S. EPA
- GMI Administrative Support Group (ASG) Update
  - Henry Ferland, Director, GMI, U.S. EPA
- Wastewater as Resources: Water, Energy, and Food Nexus
  - Dr. Qiang He, University of Tennessee
- How the Philadelphia Water Department Moved from flaring their methane to a co-generation plant with 5.6 MW power generation
  - Dr. Metin Duran, Villanova University



# **Global Methane Initiative** Wastewater Webinar

Henry Ferland Director, Administrative Support Group 21 November 2015



# **Overview**

- Administrative Support Group (ASG) Updates
- Report out from GMI Task Force Recommendations
- 2016 Global Methane Forum



# **ASG Update**

ssessment

Partnership

#### Infographic completed

- Video finished
- GMI blog
- Fact Sheets updated

Conducted **more than 600** resource assessments, feasibility studies, site visits, and study tours

Grown from 14 to 42 Partner Countries (plus the European Commission), and from 100 to 1,300 Project Network members PROJECTS

Trained **more than 15,000** people in methane mitigation techniques

> Developed more than **50 tools and publications**, and leveraged nearly **\$550 million** for project development and training

Capacity a

# Background

- From Steering Meeting in October 2014
  - Broad agreement to continue GMI
  - Requested new task force to make recommendation for changes to a future GMI.
- Global Methane Forum will be platform to recharter GMI
  - CCAC is co-hosting the GMF and will hold a CCAC Working Group in Washington DC



# **GMI Task Force**

- Task Force created and meetings initiated in January 2015
  - Convened monthly to August 2015
  - Member countries include: Argentina, Australia, Brazil, Canada, China Colombia, India, Poland, USA, Mexico, Nigeria
- Task Force developed a list of recommendations for the Steering Committee which were approved this month.



# **Recommendations Overview**

- Recommendation 1: Mission
- Recommendation 2: Strategic Alliances
- Recommendation 3: Structural changes





# Task Force Recommendation 1: Mission

- Emphasize information sharing (e.g., tools and best management practices, knowledge platforms) and policy development and guidance.
  - Shift from GMI's emphasis on a "project incubator" focused on site-specific project identification and development
- Promote methane abatement through increased strategic alliances with other global efforts.
- Maintain focus across five sectors:
  - Agriculture, Coal Mining, Municipal Solid Was (MSW), Oil & Gas, and Wastewater.



# Task Force Recommendation 2: Strategic Alliances

- Establish and strengthen strategic alliances with other existing international initiatives and organizations
- Strategically partner with CCAC.
  - Becoming a non-state partner
  - Collaborate closely at the sector level (oil and gas, MSW, ag)
  - CCAC has included strategic alliance with GMI in its Implementation Plan for its 5 Year Strategic Plan
- Strategically partner with the United Nations Economic Commission for Europe (UNECE).
- Explore opportunities to continue to collaborate with the World Bank's Climate Change Group.
  - Pilot Auction Facility

11

Global Gas Flaring Reduction Partnership



# Task Force Recommendation 3: Structural Changes

| Element                | Current                                                                                           | Recommended / future:                                                                                                                                                                                                                                                                                          |  |
|------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Steering<br>Committee  | One Chair                                                                                         | <ul> <li>Two Co-Chairs with 2-year terms.</li> <li>ASG continues to support Chairs.</li> </ul>                                                                                                                                                                                                                 |  |
| Subcommittees          | <ul> <li>5 Subcommittees: Ag,<br/>Coal, MSW, O&amp;G,<br/>wastewater</li> </ul>                   | <ul> <li>Reduce to 3 Subcommittees by<br/>forming a "Biogas" subcommittee<br/>(combining Ag, MSW, wastewater)</li> </ul>                                                                                                                                                                                       |  |
| Funding /<br>Financing | <ul> <li>No independent funding source</li> <li>No direct access to project financing.</li> </ul> | <ul> <li>Potential access to hosting methane<br/>activities via CCAC initiatives</li> <li>Linkage to financial incentives through<br/>World Bank Pilot Auction Facility</li> <li>Explore 3<sup>rd</sup> party host for trust fund if<br/>sufficient interest and commitment<br/>from other partners</li> </ul> |  |



# **Next Steps**

 GMI Steering Committee approved recommendations on November 4.
 Action items to follow:

- Revise Terms of Reference
- Develop Agenda, speakers for Launch event, Recharter Statement
- GMI applies to be CCAC Non-State Partner



# **2016 Global Methane Forum**

Premier showcase for global methane mitigation opportunities

- Co-sponsored by GMI and CCAC
- 3–day event, as part of full week, adjacent to CCAC working group meeting
- 2 separate high-level (Ministerial) methane-focused plenaries on financing opportunities and policy roundtables
- Technical dialogues focusing on sector challenges, approaches





# **Global Methane Forum**

- Venue: Georgetown University
- Notional schedule:

| Mon 3/28    | Tues 3/29                                                           | Wed 3/30                                                                                | Thurs 3/31                        | Fri 4/1                           |
|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| Biogas Site | AM:<br>Plenary session                                              | AM:<br>Plenary session -<br>GMI Strategic<br>Alliance/ New Five<br>Year Pledge          | All day:<br>CCAC Working<br>Group | All day:<br>CCAC Working<br>Group |
| Visit       | PM:<br>GMI Steering<br>committee;<br>technical / policy<br>sessions | PM:<br>Technical / policy<br>sessions (GMI<br>sectors jointly with<br>CCAC initiatives) |                                   |                                   |



# **2016 Global Methane Forum**

- Part of the plenaries, feature an event that announces (Recharter Declaration) the renewed five-year commitment of GMI partners to methane mitigation through GMI and its new strategic alliances
- High-level speakers (to be invited):
  - CCAC Co-Chairs
  - Active CCAC and GMI partners: Canada (TBD), China (TBD)
  - UNECE Executive Secretary
  - World Bank (TBD)
  - CEO Oil and Gas partner CCAC Oil & Gas Methane Partnership (TBD)
  - UNEP (CCAC Secretariat)



# **Global Methane Forum:**

# **Next Steps**

- Develop final agenda in coordination with CCAC (ongoing)
- Outreach at COP Paris
- Outreach events at embassy(-ies) (Washington DC): January 2016
- Networking event country sponsors? Project Network sponsors?
- Biogas Subcommittee structural planning call with co-chairs (early 2016)



Thank you Henry Ferland +1 (202) 343-9330 Ferland.henry@epa.gov



# Global Methane Forum



28-30 March 2016 O Washington, DC, USA

#### **Wastewater as Resources:**

#### Water, Energy, and Food Nexus

#### Qiang He, Chris Cox, & Greg Reed

Dept. of Civil & Environmental Engineering University of Tennessee, Knoxville

#### **Christian Seal**

Ingeniero Civil Universidad de Santiago de Chile

#### Water

- 1. Industry
- 2. Agriculture
- 3. Domestic use

#### Energy

- 1. Heating
- 2. Power generation
- 3. Transportation

#### Food

- 1. Nutrients: N & P (also energy)
- 2. Water
- 3. Soil amendment

#### Water

Water

Energy

Food

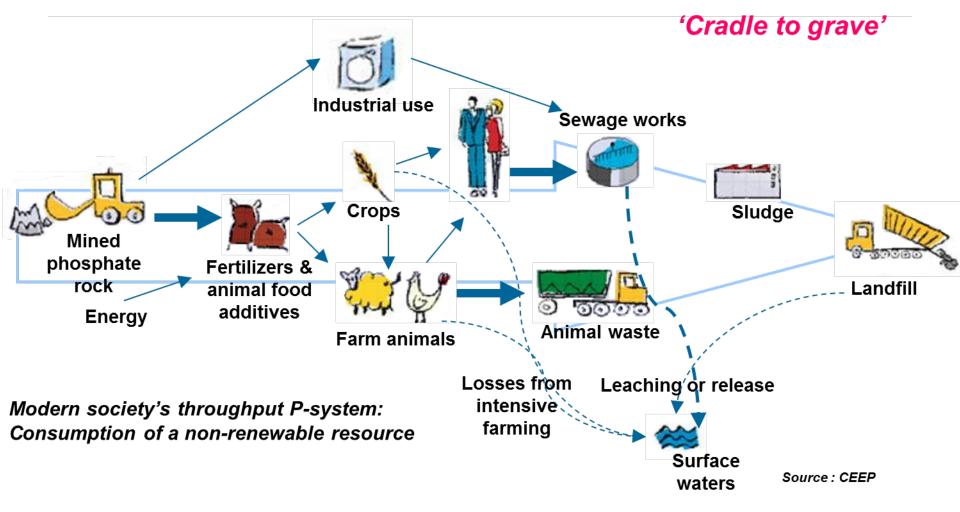
- 1. Industry
- 2. Agriculture
- 3. Domestic use
- Largest irrigated crop wastewater recycle in U.S.
- Produces 76,000 m<sup>3</sup>/day recycled water
- Irrigates 5,000 hectares Through anaerobic biosolids treatment and cogeneration, produces 50% of WWTP's energy needs
- No energy wasted for nitrogen oxidation – all is used as plant fertilizer



Monterey Regional Water Pollution Control Agency

#### Water

- 1. Industry
- 2. Agriculture
- 3. Domestic use


#### Energy

- 1. Heating
- 2. Power generation
- 3. Transportation

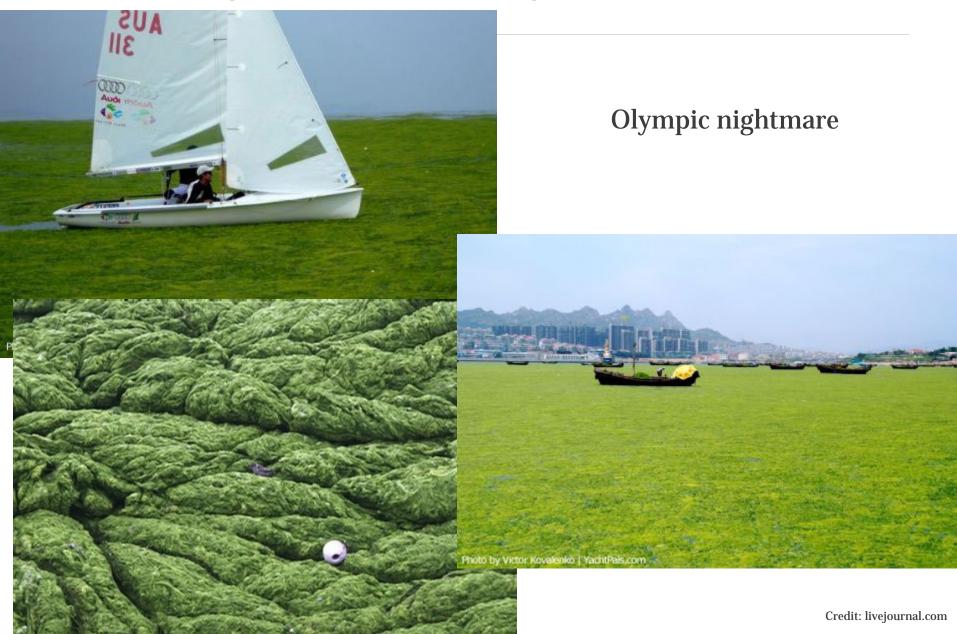
#### Food

- 1. Nutrients: N & P
- 2. Water
- 3. Soil amendment

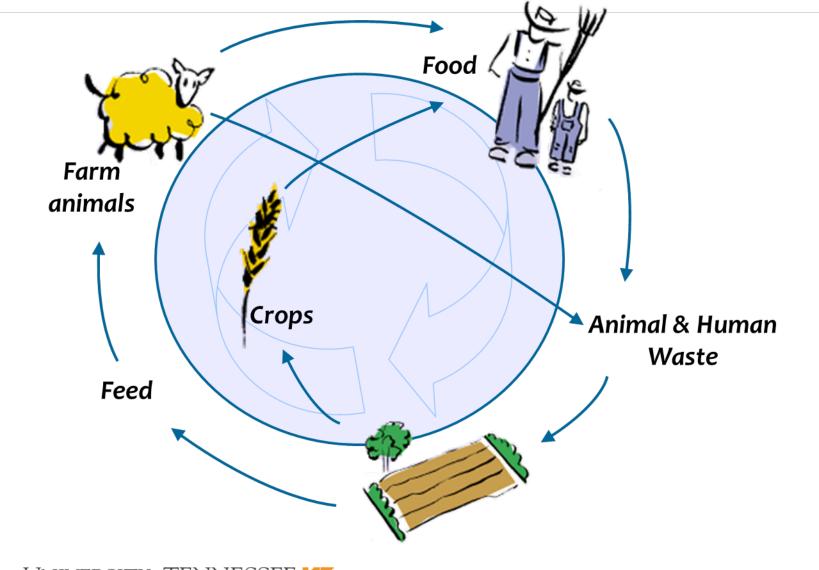
### Modern Phosphorus Use



#### This has consequences

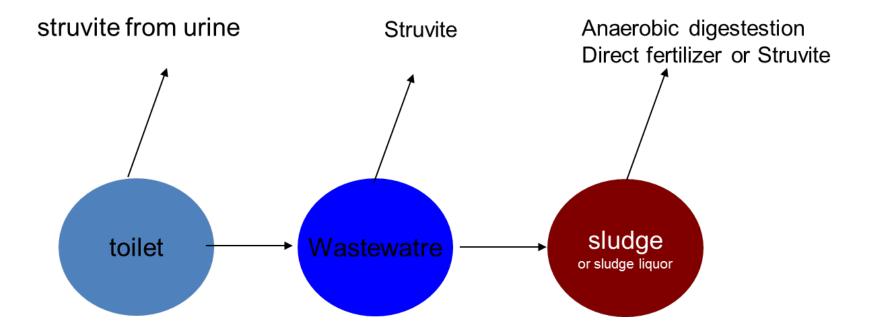

## Modern Phosphorus Use: Consequence

Nitrogen or phosphorus are most likely the limiting nutrients.




Source: ABC News

### Modern Phosphorus Use: Consequence




### **Closed Phosphorus Cycle**



### These practices will have better consequences

Human excretion: 1-2 g/p/d

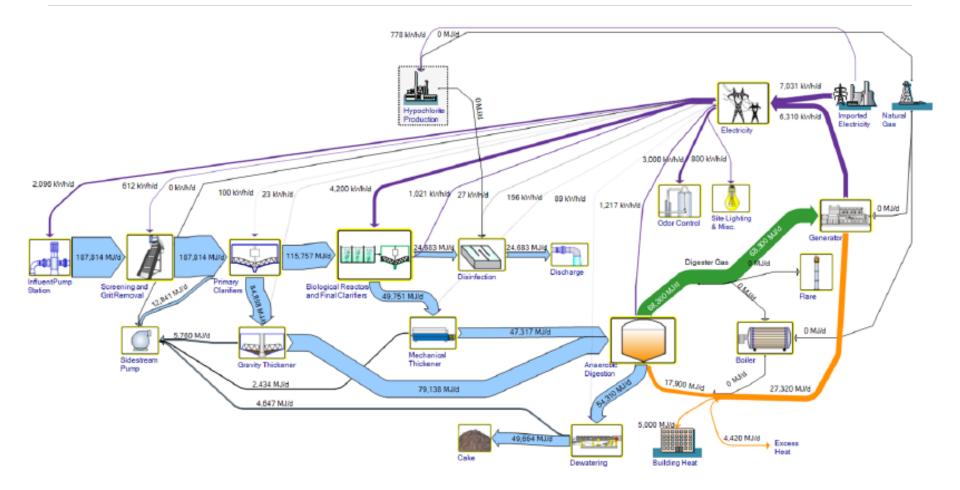


#### Water

- 1. Industry
- 2. Agriculture
- 3. Domestic use

**Energy :** Wastewater treatment ~3% of national electrical load Solution--Anaerobic conversion to **methane** 

- 1. Heating
- 2. Power generation
- 3. Transportation

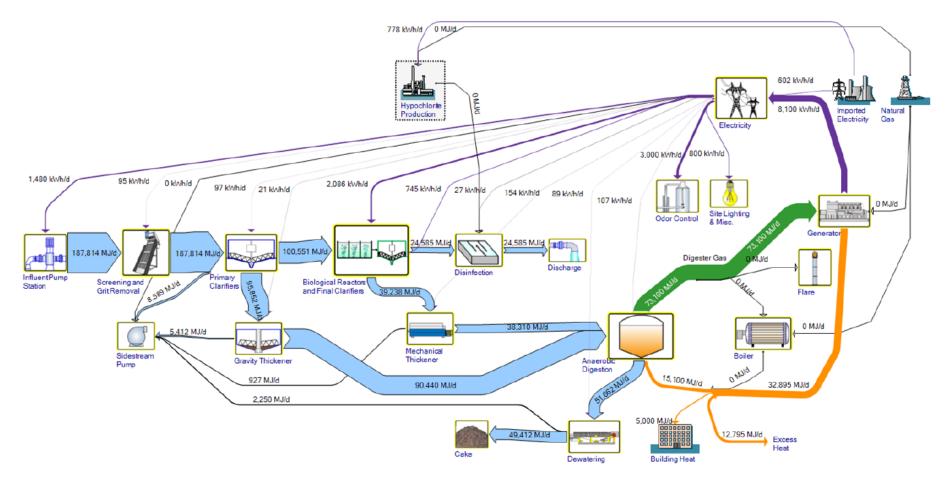

#### Food

- 1. Nutrients: N & P
- 2. Water
- 3. Soil amendment

# Typical Energy Requirement of WWT

|                                            | kWh/m³ |
|--------------------------------------------|--------|
| Conventional Aerobic Activated<br>Sludge   | 0.6    |
| Conventional Aerobic with<br>Nitrification | 0.8    |
| Aerobic Membrane Bioreactor                | 1.0    |
| Conventional Aerobic with RO               | 2.5    |
| WERF, 2012                                 |        |

# Typical Energy Balance of Activated Sludge WWTP




WERF, 2012 THE UNIVERSITY of TENNESSEE UT KNOXVILLE

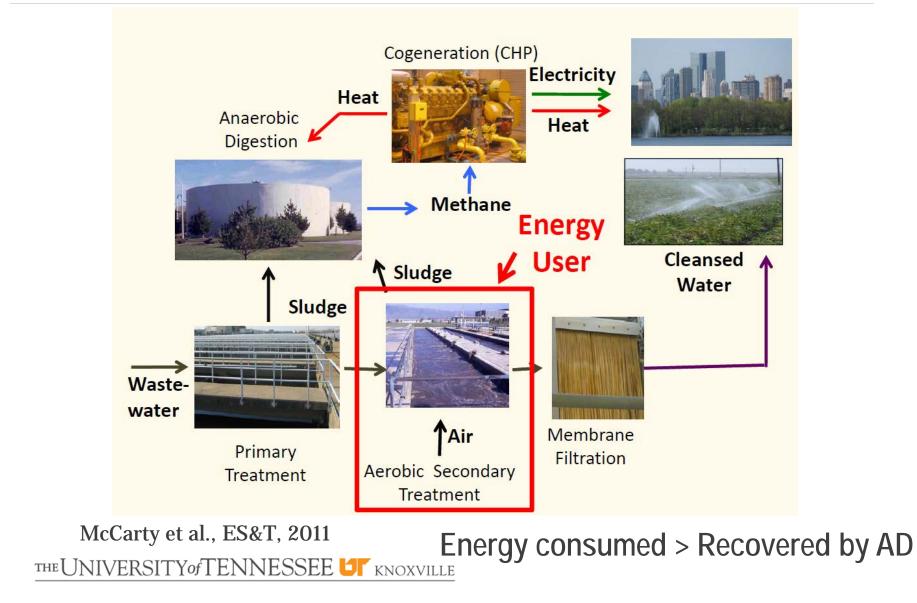
### Best Practices to Improved Energy Balance

- Anaerobic digestion with combined heat and power (CHP) is the most advantageous approach to energy recovery, reducing energy requirements by up to 35% at WWTPs.
- 2. Co-digestion of high-strength waste in anaerobic digesters is a valuable approach to achieve energy neutrality.
- 3. Improving primary treatment and solids capture in thickening and dewatering processes has the most significant total positive impact of all the best practices.
- 4. Significant savings in aeration blower electricity usage can be achieved by reducing fouling in fine bubble diffusers through improved operation and maintenance procedures.
- 5. Dewatered biosolids (cake) retains a significant portion of the influent chemical energy.
- 6. The full combination of best practices can result in approximately 40% lower energy consumption than "typical" performance.

### Improved Energy Balance of Activated Sludge WWTP



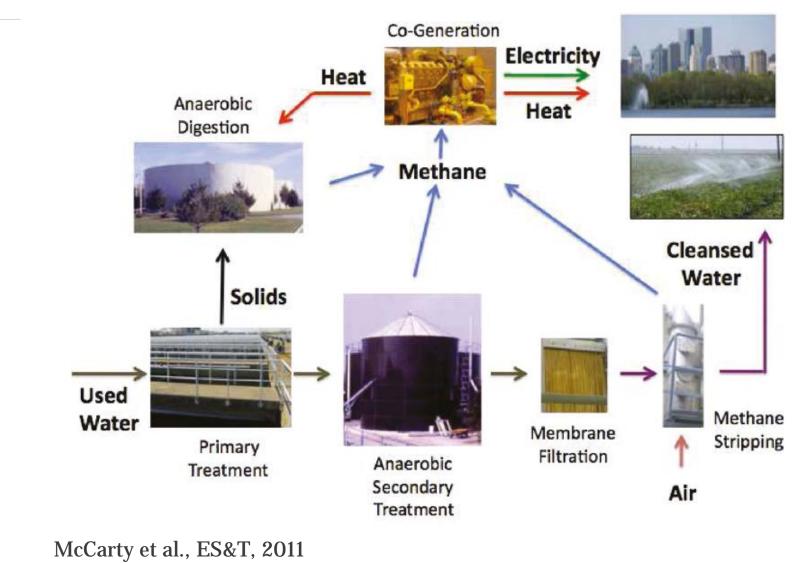
WERF, 2012

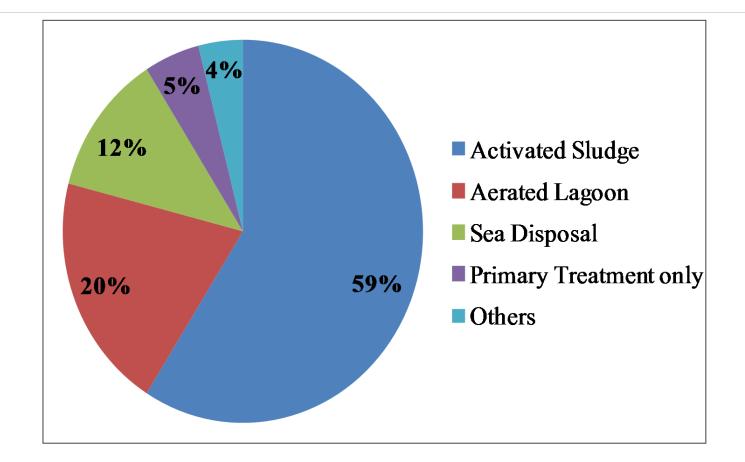

# **Problem:** Anaerobic Sludge Digestion

- 1. Energy in dissolved organics is not recovered by anaerobic sludge digestion.
- 2. Dissolved organics is removed by aerobic processes that consume energy.

|                | typical concentrations <sup>a</sup><br>(mg/L) | energy (kWh/m <sup>3</sup> )                             |                                                          |  |
|----------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
| constituent    |                                               | maximum potential from<br>organic oxidation <sup>b</sup> | required to produce<br>fertilizing elements <sup>c</sup> |  |
| organics (COD) |                                               |                                                          |                                                          |  |
| total          | 500                                           |                                                          |                                                          |  |
| refractory     | 180                                           |                                                          |                                                          |  |
| suspended      | 80                                            | 0.31                                                     |                                                          |  |
| dissolved      | 100                                           | 0.39                                                     |                                                          |  |
| biodegradable  | 320                                           |                                                          |                                                          |  |
| suspended      | 175                                           | 0.67                                                     |                                                          |  |
| dissolved      | 145                                           | 0.56                                                     |                                                          |  |
| nitrogen       |                                               |                                                          |                                                          |  |
| organic        | 15                                            |                                                          | 0.29                                                     |  |
| ammonia        | 25                                            |                                                          | 0.48                                                     |  |
| phosphorus     | 8                                             |                                                          | 0.02                                                     |  |
| water          |                                               |                                                          |                                                          |  |
| totals         |                                               | 1.93                                                     | 0.79                                                     |  |
| THE UNIVERSI   | TYOFTENÑESSEE 👉 KNO                           | OXVILLE                                                  |                                                          |  |

McCarty et al., ES&T, 2011


### Aerobic Treatment for Partial Resource Recovery




# **Opportunity:** Anaerobic Wastewater Treatment

Achieve energy-positive wastewater treatment by fully capturing all energy in wastewater by 100% anaerobic treatment of wastewater.

### Anaerobic Treatment for Complete Resource Recovery





Centralized wastewater treatment systems operated by regional utilities in Chile

THE UNIVERSITY of TENNESSEE UT KNOXVILLE

н.

| Región                  | Urban<br>Population | Residential<br>Customers | Residential<br>Customers<br>with Sewer | Population<br>with Sewage<br>Collection | Residential<br>Customers<br>with Sewage<br>Treatment | Population<br>with Sewage<br>Treatment | %Population<br>with Sewage<br>Treatment |
|-------------------------|---------------------|--------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------|
| Tarapacá (I)            | 307,096             | 83,107                   | 79,109                                 | 298,664                                 | 79,109                                               | 298,664                                | 97.3%                                   |
| Antofagasta (II)        | 576,303             | 149,313                  | 148,938                                | 574,813                                 | 148,938                                              | 574,813                                | 99.7%                                   |
| Atacama (III)           | 273,600             | 81,832                   | 78,522                                 | 263,919                                 | 78,522                                               | 263,919                                | 96.5%                                   |
| Coquimbo (IV)           | 607,396             | 188,308                  | 181,195                                | 586,290                                 | 175,444                                              | 569,912                                | 93.8%                                   |
| Valparaiso (V)          | 1,575,751           | 542,556                  | 489,663                                | 1,460,970                               | 489,594                                              | 1,460,781                              | 92.7%                                   |
| O'Higgins (VI)          | 663,524             | 197,718                  | 168,323                                | 574,325                                 | 168,323                                              | 574,325                                | 86.6%                                   |
| Maule (VII)             | 683,373             | 212,714                  | 203,404                                | 655,653                                 | 200,914                                              | 645,288                                | 94.4%                                   |
| Biobío (VIII)           | 1,776,626           | 486,432                  | 452,789                                | 1,655,146                               | 452,789                                              | 1,655,146                              | 93.2%                                   |
| Araucanía (IX)          | 624,229             | 185,653                  | 174,931                                | 593,002                                 | 174,931                                              | 593,002                                | 95.0%                                   |
| Los Lagos (X)           | 586,858             | 160,094                  | 152,191                                | 557,619                                 | 152,191                                              | 557,619                                | 95.0%                                   |
| Aysén (XI)              | 86,588              | 23,789                   | 22,685                                 | 82,704                                  | 22,685                                               | 82,704                                 | 95.5%                                   |
| Magallanes (XII)        | 151,958             | 45,819                   | 45,154                                 | 149,751                                 | 45,154                                               | 149,751                                | 98.5%                                   |
| De los Ríos (XIV)       | 250,155             | 69,849                   | 64,782                                 | 231,358                                 | 64,782                                               | 231,358                                | 92.5%                                   |
| Arica y Parinacota (XV) | 211,091             | 55,464                   | 55,258                                 | 210,307                                 | 55,258                                               | 210,307                                | 99.6%                                   |
| Metropolitana (RM)      | 7,337,395           | 1,927,545                | 1,900,777                              | 7,234,510                               | 1,900,327                                            | 7,234,412                              | 98.6%                                   |
| Total                   | 15,711,942          | 4,410,193                | 4,217,721                              | 15,129,029                              | 4,208,961                                            | 15,102,000                             | 96.12%                                  |

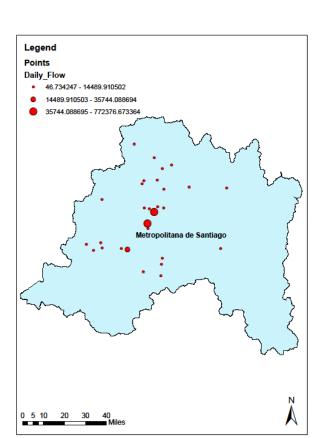
0

н

**01** 11

#### THE UNIVERSITY of TENNESSEE

н.

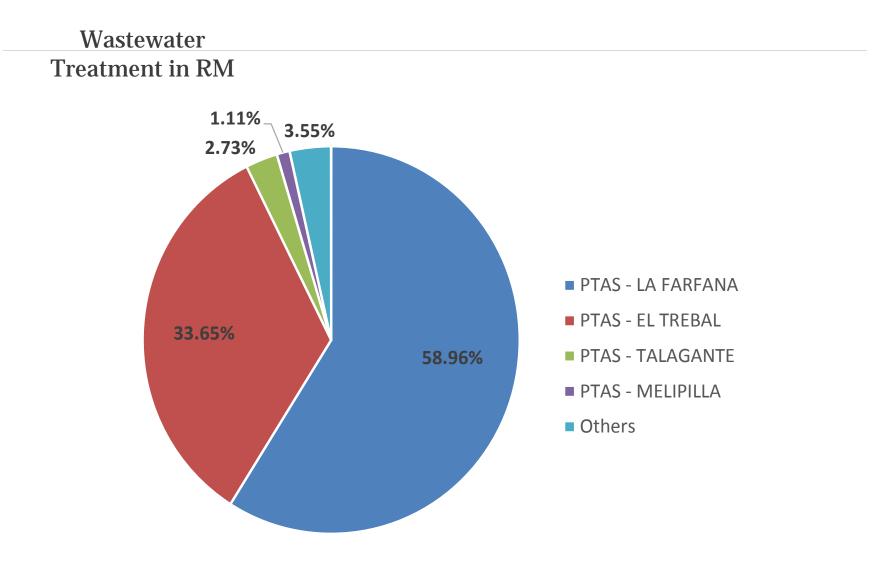

| Región                  | Urban<br>Population | Residential<br>Customers | Residential<br>Customers<br>with Sewer | Population<br>with Sewage<br>Collection | Residential<br>Customers<br>with Sewage<br>Treatment | Population<br>with Sewage<br>Treatment | %Population<br>with Sewage<br>Treatment |
|-------------------------|---------------------|--------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------|
| Tarapacá (I)            | 307,096             | 83,107                   | 79,109                                 | 298,664                                 | 79,109                                               | 298,664                                | 97.3%                                   |
| Antofagasta (II)        | 576,303             | 149,313                  | 148,938                                | 574,813                                 | 148,938                                              | 574,813                                | 99.7%                                   |
| Atacama (III)           | 273,600             | 81,832                   | 78,522                                 | 263,919                                 | 78,522                                               | 263,919                                | 96.5%                                   |
| Coquimbo (IV)           | 607,396             | 188,308                  | 181,195                                | 586,290                                 | 175,444                                              | 569,912                                | 93.8%                                   |
| Valparaiso (V)          | 1,575,751           | 542,556                  | 489,663                                | 1,460,970                               | 489,594                                              | 1,460,781                              | 92.7%                                   |
| O'Higgins (VI)          | 663,524             | 197,718                  | 168,323                                | 574,325                                 | 168,323                                              | 574,325                                | 86.6%                                   |
| Maule (VII)             | 683,373             | 212,714                  | 203,404                                | 655,653                                 | 200,914                                              | 645,288                                | 94.4%                                   |
| Biobío (VIII)           | 1,776,626           | 486,432                  | 452,789                                | 1,655,146                               | 452,789                                              | 1,655,146                              | 93.2%                                   |
| Araucanía (IX)          | 624,229             | 185,653                  | 174,931                                | 593,002                                 | 174,931                                              | 593,002                                | 95.0%                                   |
| Los Lagos (X)           | 586,858             | 160,094                  | 152,191                                | 557,619                                 | 152,191                                              | 557,619                                | 95.0%                                   |
| Aysén (XI)              | 86,588              | 23,789                   | 22,685                                 | 82,704                                  | 22,685                                               | 82,704                                 | 95.5%                                   |
| Magallanes (XII)        | 151,958             | 45,819                   | 45,154                                 | 149,751                                 | 45,154                                               | 149,751                                | 98.5%                                   |
| De los Ríos (XIV)       | 250,155             | 69,849                   | 64,782                                 | 231,358                                 | 64,782                                               | 231,358                                | 92.5%                                   |
| Arica y Parinacota (XV) | 211,091             | 55,464                   | 55,258                                 | 210,307                                 | 55,258                                               | 210,307                                | 99.6%                                   |
| Metropolitana (RM)      | 7,337,395           | 1,927,545                | 1,900,777                              | 7,234,510                               | 1,900,327                                            | 7,234,412                              | 98.6%                                   |
| Total                   | 15,711,942          | 4,410,193                | 4,217,721                              | 15,129,029                              | 4,208,961                                            | 15,102,000                             | 96.12%                                  |

0

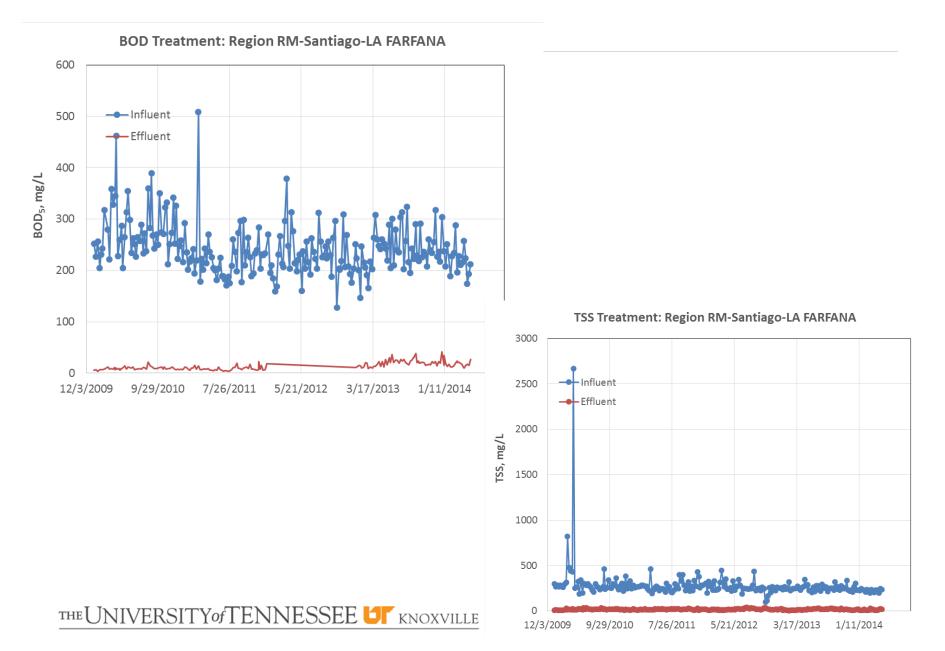
н

**01** 11

#### THE UNIVERSITY of TENNESSEE




Wastewater


Treatment in RM

| Commune           | Utility                         | Wastewater Treated, m <sup>3</sup> /Mo |
|-------------------|---------------------------------|----------------------------------------|
| BUIN              | PTAS - BUIN MAIPO               | 274,601                                |
| BUIN              | PTAS - ESTACION BUIN            | 6,371                                  |
| COLINA            | PTAS - SANTA ELENA              | 8,988                                  |
| COLINA            | PTAS - SANTA LUZ                | 30,279                                 |
| CURACAVI          | PTAS - CURACAVÍ                 | 95,797                                 |
| EL MONTE          | PTAS - EL MONTE                 | 168,403                                |
| LAMPA             | PTAS - LARAPINTA                | 42,593                                 |
| LAMPA             | PTAS - LAS HIGUERAS             | 65,634                                 |
| LAMPA             | PTAS - SANTO TOMAS              | 44,760                                 |
| LAMPA             | PTAS - JARDINES DE LA ESTACIÓN  | 2,713                                  |
| LO BARNECHEA      | PTAS - LOS TRAPENSES            | 85,757                                 |
| LO BARNECHEA      | PTAS - LA LEONERA               | 1,422                                  |
| LO PRADO          | PTAS - JARDIN LO PRADO          | 66,133                                 |
| MELIPILLA         | PTAS - EL PARRONAL              | 14,360                                 |
| MELIPILLA         | PTAS - MELIPILLA                | 440,735                                |
| MELIPILLA         | PTAS - POMAIRE                  | 50,015                                 |
| MELIPILLA         | PTAS - VILLA GALILEA            | 27,209                                 |
| PADRE HURTADO     | PTAS - EL TREBAL                | 13,407,037                             |
| PADRE HURTADO     | PTAS - PUERTAS DE PADRE HURTADO | 4,176                                  |
| PAINE             | PTAS - PAINE                    | 211,241                                |
| PAINE             | PTAS - VALDIVIA DE PAINE        | 57,362                                 |
| PUDAHUEL          | PTAS - BARRANCAS                | 76,650                                 |
| PUDAHUEL          | PTAS - IZARRA DE LO AGUIRRE     | 1,626                                  |
| PUDAHUEL          | PTAS - LOMAS DE LO AGUIRRE      | 10,611                                 |
| SAN JOSE DE MAIPO | PTAS - SAN JOSE DE MAIPO        | 37,090                                 |
| SANTIAGO          | PTAS - LA FARFANA               | 23,493,124                             |
| TALAGANTE         | PTAS - TALAGANTE                | 1,087,216                              |
| TILTIL            | PTAS - EL MANZANO               | 8,016                                  |
| TILTIL            | PTAS - TIL TIL                  | 23,099                                 |
| Total             |                                 | 39,843,019                             |

THE UNIVERSITY of TENNESSEE **U** KNOXVILLE



THE UNIVERSITY of TENNESSEE UT KNOXVILLE



#### **Methane Potential**

Methane Potential = (% collected) × (total BOD<sub>5</sub> produced) × (% anaerobic) × (% anaerobic w/primary) × (1-% BOD removed in prim. treat.)] × (Bo) × (MCFanaerobic) × 1/10^6

#### Increase in methane production: (Anaerobic Wastewater Treatment vs Anaerobic Sludge Digestion)

122%

THE UNIVERSITY of TENNESSEE 5 KNOXVILLE

#### Acknowledgement

**U.S. Environmental Protection Agency** 



#### **Global Methane Initiative**





COALICIÓN CLIMAY AIRE LIMPIO PARA REDUCIR CONTAMINANTES DE VIDA CORTA

THE UNIVERSITY of TENNESSEE UT KNOXVILLE





1/23

# How Philadelphia Water Department moved from flaring their methane to a co-generation plant with 5.6 MW power generation

#### by Metin Duran (Villanova University) and Paul M. Kohl (Philadelphia Water Department)

Metin Duran, Ph.D.

### Outline

- Introduction and objectives
- PWD's Northeast Water Pollution Control Plant
- Digester optimization work
- Co-digestion studies
- Details of co-generation plant
- Concluding remarks

# Introduction and objectives

Philadelphia is 5<sup>th</sup> largest city in US with approximately 1.5 million people living in greater Philadelphia area

Philadelphia Water Department (PWD) is one of city government arms responsible for water supply and sanitary operations

Sanitary operations include operating three wastewater treatment plants, all performing secondary treatment of wastewater by some form of activated sludge process

#### Introduction and objectives (Cont.)

These three plants treat a combined 471 MGD wastewater

- 1.Southwest Water Pollution Control Plant (SEWPCP)
  - Largest
  - Uses pure oxygen activated sludge

2.Northeast Water Pollution Control Plant (NEWPCP)

Second largest

### **3.Southeast Water Pollution Control Plant**

- Smallest
- No anaerobic digestion (thickened sludge is transferred to NEWPCP for digestion and processing)

#### Introduction and objectives (Cont.)

PWD wanted to conduct pilot and bench-scale studies targeted to optimizing performance of anaerobic sludge digestion process at their NEWPCP

Villanova University's Environmental Microbiology and Biotechnology Laboratory (Civil and Environmental Engineering Department) was chosen through a competitive application process to carry out digester optimization work

These studies focused on ways to improve volatile solids destruction and thereby improve methane production and evaluate feasibility of co-digestion of different substrates

# **Northeast Water Pollution Control Plant**

NEWPCP is second largest of three PWD wastewater treatment plant with average discharge flow of 200 MGD (including stormwater from combined sewer system areas)

Conventional activated sludge process including preliminary treatment (screening, grit removal, and primary settling) and secondary treatment (aeration, secondary clarification, and chlorination) is used

Sludge management includes dissolved air flotation thickening of waste activated sludge, anaerobic digestion for stabilization

#### **NEWPCP (Cont.)**

NEWPCP has eight "pancake type" anaerobic digesters each with 2 MG capacity

Mesophilic digesters has design SRT/HRT of 18 days and each is cleaned once about every four to five years



Digesters at NEWPCP are mixed by sludge circulation (sludge drawn off from the bottom of digester is mixed with feed sludge after going through a tube heat exchanger and then discharged back to digester five feet below normal liquid level)

# **NEWPCP (Cont.)**

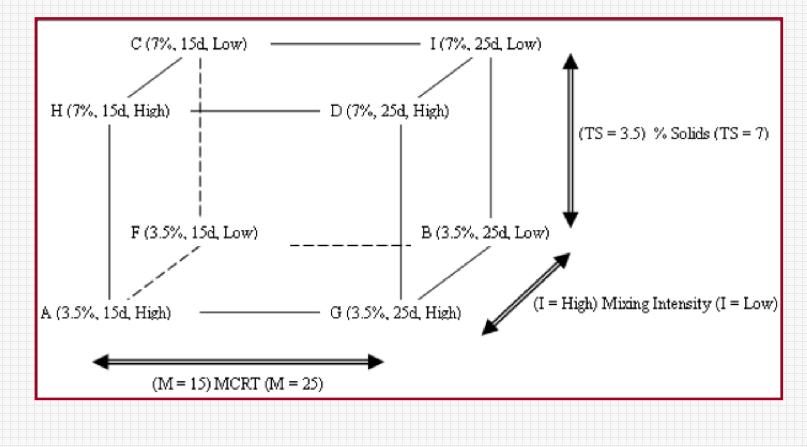
Digested solids are transported to a privately operated facility for , and high speed centrifuge dewatering, drying, pelletisation and subsequent use as fertilizer and fuel



Until 2013, a small fraction of methane generated was used for heating and remaining was flared

Since then all methane generated is used to power a co-generation plant for heat and electricity production

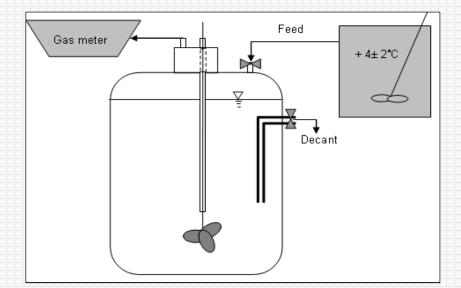
# **Digester optimization work**


#### 1. Effects of operating parameters

A factorial design approach was used to study effects of three main operating parameters on digestion efficiency: Mixing; Mean cell residence time (MCRT or SRT); and Feed solids (TS) contents

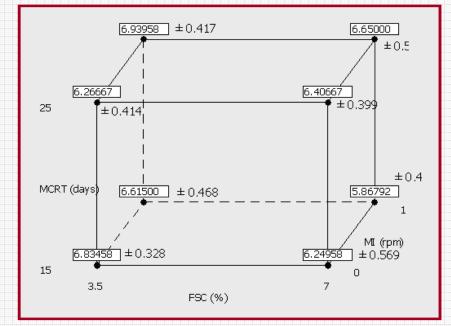
Each variable was tested within typical design and operating ranges:

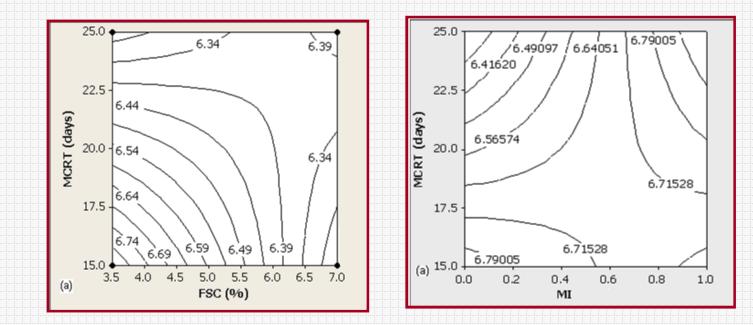
Mixing: Low (130 ft\*lbf/ft<sup>3</sup>\*d twice a day for 5 min.) to high (130 for 5 minutes hourly totaling 1580 ft\*lbf/ft<sup>3</sup>\*d)
MCRT: 15 to 25 days
Feed TS: 3.5 to 7%

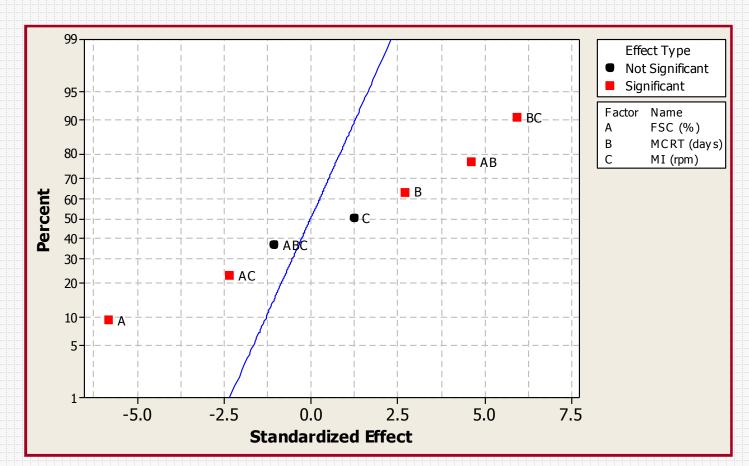

Factorial design approach was chosen since it requires fewer experiments and gives a quantitative estimate on how these parameters interact



Metin Duran, Ph.D.


10/23


Eight 5-gallong digesters were operated to carry out "factorial design" experiments, four in each phase, due to logistical considerations




|           | Dimenter | Factors (Operating conditions) |             |        |  |  |
|-----------|----------|--------------------------------|-------------|--------|--|--|
|           | Digester | TS (%)                         | MCRT (days) | Mixing |  |  |
|           | A        | 3.5                            | 15          | High   |  |  |
| Period I  | В        | 3.5                            | 25          | Low    |  |  |
|           | С        | 7                              | 15          | Low    |  |  |
|           | D        | 7                              | 25          | High   |  |  |
| Period II | E*       | 3.5                            | 15          | High   |  |  |
|           | F        | 3.5                            | 15          | Low    |  |  |
|           | G        | 3.5                            | 25          | High   |  |  |
|           | Н        | 7                              | 15          | High   |  |  |
|           |          | 7                              | 25          | Low    |  |  |

Specific  $CH_4$  production (ft<sup>3</sup>  $CH_4$ /lb VS fed) was used as a measure of digestion performance to quantify effects of operating parameters on  $CH_4$  generation



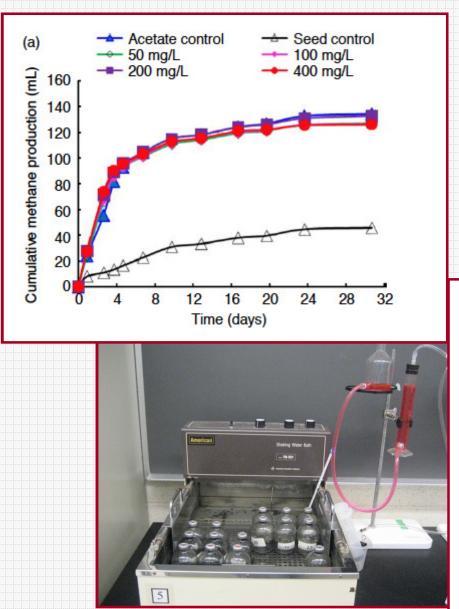




Specific Methane (ft<sup>3</sup>/lb VS fed.day) =

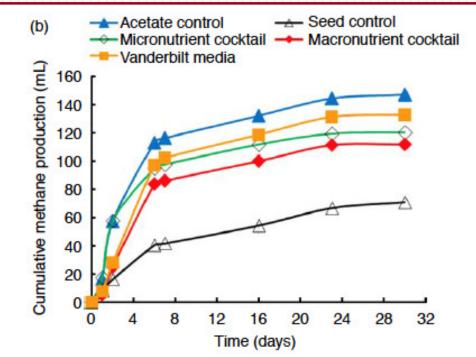
9.35896-0.47786\*FSL-0.12929\*MCRT-1.7975\*MI+0.02071\*(FSL\*MCRT)

+0.068333\*(FSL\*MI)+0.11600\*(MCRT\*MI)-0.00764\*(FSL\*MCRT\*MI)


#### **Optimization work (Cont.)**

### 2. Nutrient supplement study

Previous studies showed that full-scale anaerobic digesters could benefit from trace metal and nutrient supplementation, particularly beneficial effects of Fe, Ni, Co addition has been emphasized


A bench scale biochemical methane potential (BMP) study was conducted to determine if digesters at NEWPCP would benefit from supplement of : 1)Various concentrations of Fe, Ni, Co; 2) A macro nutrient cocktail; 3) A trace metal cocktail; 4) A combination of macro nutrient and trace metal cocktails (Vanderbilt Media)

#### **Optimization work: Nutrient supplementation (Cont.)**



Results suggested that there was no benefit of nutrient supplementation (there was slight inhibition in some

#### cases)



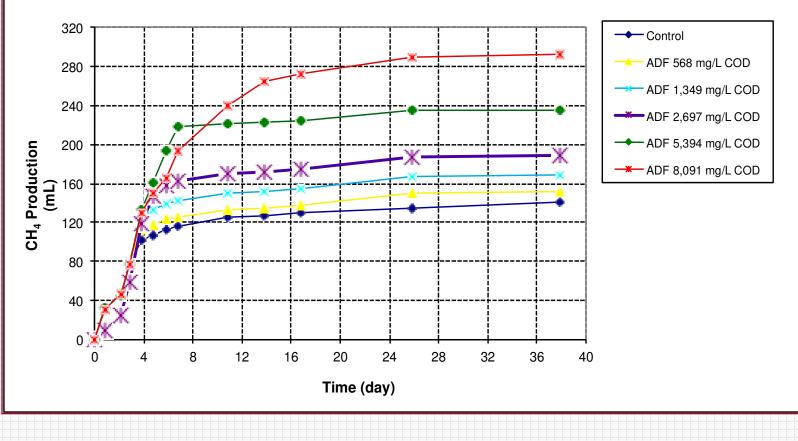
Metin Duran, Ph.D.

Water Science and Technology (2010) 62(12):2905-2911

15/23

# **Co-digestion studies**

# 1. Co-digestion of aircraft deicing fluid (ADF)


As a potential co-digestion feed-stock, runoff from Philadelphia International Airport (PHL) was studied for its BMP and degradation kinetics

PHL uses propylene glycol-based Type I (88% propylene glycol and 11% water) and Type IV (52.2% propylene glycol and 46.8% water) aircraft deicing fluids (ADF)

Various diluted concentrations of both ADF types were tested

#### **Co-digestion studies: ADF (Cont.)**

Results indicated both ADF types have high CH<sub>4</sub> potential and they are easily co-digested in bench-scale anaerobic digesters that simulated the full-scale digesters at NEWPCP



17/23

Metin Duran, Ph.D.

### **Co-digestion studies (Cont.)**

#### 2. Co-digestion of biosolids from a refinery

Waste activated sludge from two different treatment plants of the same refinery process were investigated for their potential toxicity and BMP as potential codigestion feed-stock

Results suggested that although not inhibitory for codigestion, biosolids from that particularly refinery had limited  $CH_4$  potential

### **Co-digestion studies (Cont.)**

#### 3. Co-digestion of FOG (scum)

Possible inhibitory effect and BMP potential of clarifier skimmings (fats, oil, and grease, *aka* scum) was investigated when they are co-digested

# This particular work was carried out using five-gallon bench-scale digesters

|                                        | Scum sample           |                                   |
|----------------------------------------|-----------------------|-----------------------------------|
| Parameter                              | From primary settlers | From skimmings concentration tank |
| Total solids (TS), mg/L                | 287,000 (13,900)      | 627,000 (1,710)                   |
| Volatile solids (VS), % of TS          | 97 (1.22)             | 98 (1.69)                         |
| Chemical oxygen demand (COD), g/g scum | 1.18 (0.084)          | 1.40 (0.065)                      |

<sup>a</sup>Values in parenthesis represent standard deviations of triplicate samples.

#### **Co-digestion studies: Scum co-digestion (Cont.)**

Results indicated scum is a viable co-digestion candidate with high potential (about 0.3 MW power equivalent)

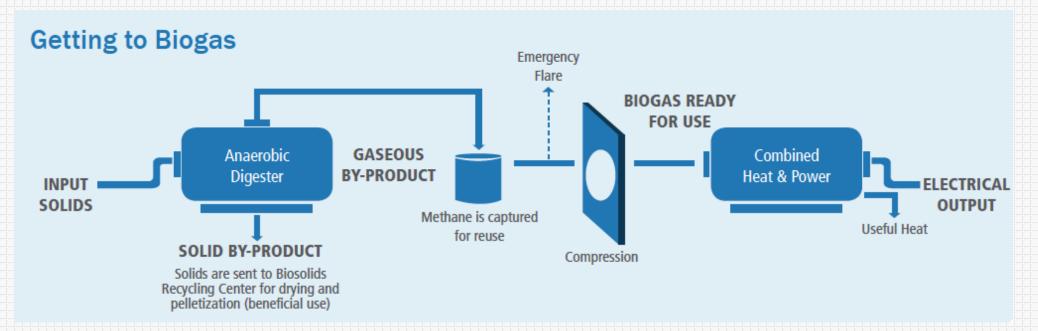
However, due to presence of excessive debris in scum collection tanks, materials handling in feeding scum to digester may pose issues and improving headworks screening process might be necessary

| COD loading rate (g COD/(L·d)) |                        | CH₄ yield (L CH₄/d) |            | Specific CH₄ yield (L CH | Specific CH <sub>4</sub> yield (L CH <sub>4</sub> /kg COD) |  |
|--------------------------------|------------------------|---------------------|------------|--------------------------|------------------------------------------------------------|--|
| Scum and feed                  | Scum only <sup>a</sup> | Scum and feed       | Scum only  | Scum and feed            | Scum only                                                  |  |
| 5.6                            | 1.5                    | 17.4 (1.8)          | 7.7 (1.4)  | 238.4 (24.8)             | 105.1 (18.8)                                               |  |
| 6.7                            | 2.6                    | 22.6 (3.4)          | 12.6 (2.8) | 257.7 (39.2)             | 143.5 (32.1)                                               |  |
| 7.6                            | 3.5                    | 25.9 (3.1)          | 16.2 (2.9) | 262.2 (31.6)             | 163.9 (29.8)                                               |  |
| 11.0                           | 7.0                    | 44.1 (5.1)          | 35.9 (4.4) | 308.4 (35.9)             | 251.3 (30.5)                                               |  |

<sup>a</sup>CH<sub>4</sub> production from 'scum only' was calculated by taking the difference in CH<sub>4</sub> generation from R1 and R2.

<sup>b</sup>Values in parenthesis represent standard deviations of triplicate samples.

# **Co-generation plant**


With inclusion of ADF runoff from PHI, PWD were able to generate enough  $CH_4$  to make investing in a cogeneration plant economically feasible

On December 23, 2011, PWD finalized its plans to build a co-generation plant at NEWPCP

5.6 MW capacity co-generation plant now runs on CH<sub>4</sub> generated from anaerobic digesters in NEWCP

At full capacity, co-generation plant would meet all process heat needs and eighty-five percent of the electrical requirements for plant operations

# **Co-generation plant (Cont.)**



#### **Important Facts**

#### 1. Energy production

- 43 million kWh per year
- Enough energy to power over 4,000 Pennsylvania homes annually. (2010 basis, US Energy Information Administration data)

#### 2. Facility Equipment

- Four 1.4 MW reciprocating engines
- Gas cleaning equipment

- State-of-the-art air pollution control equipment
- Power and heat distribution system

#### 3. Biogas cogeneration is highly efficient

- The generator engines burn the biogas, converting 38% of the energy to electricity and recapturing 44% of the waste heat. This results in a highly efficient capture of over 80% of the available energy.
- In contrast, a coal-fired electrical generation station is about 33 to 35% efficient based on the energy content of its fuel.

# **Concluding remarks**

Anaerobic digester optimization and additional feed stocks for co-digestion could make co-generation plants economically feasible especially for large wastewater treatment plants

CH<sub>4</sub> to energy projects are especially attractive in countries where cost of energy is relatively high

University-industry collaboration is key in conducting bench-scale optimization and co-digestion studies within a limited budget

NEWPCP work could serve as a model for other largescale facilities around the world