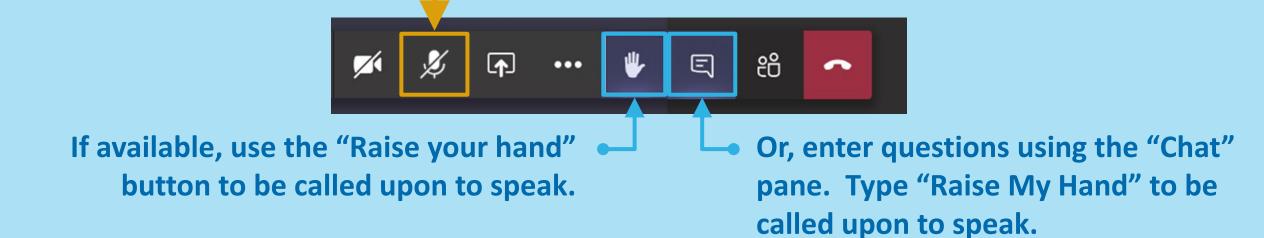
Seeing Methane, the Invisible Problem ...

Who is Using Which Number?



Oil & Gas Subcommittee Webinar 23 June 2020

Housekeeping – Tips for using Teams

Mute your microphone.

- Everyone should set the microphone to mute unless actively speaking.
- If participating by phone, press *6 to mute your phone.

Welcome

– James Diamond, GMI O&G Subcommittee Co-Chair, Environment and Climate Change Canada (ECCC)

Presentation from GHGSat

- Stéphane Germaine, Chief Executive Officer, GHGSat Inc.
- Presentation from The Sniffers
 - Bart Wauterickx, Chief Executive Officer, The Sniffers

Presentation from Energy & Emissions Research Lab

 Matthew Johnson, Research Professor, Mechanical & Aerospace Engineering Energy & Emissions Research Lab., Carleton University

Facilitated Discussion

- James Diamond
- GMI Secretariat News and Updates
 - Monica Shimamura, Director, Secretariat

Subcommittee News and Updates

- James Diamond
- Wrap up and Adjourn

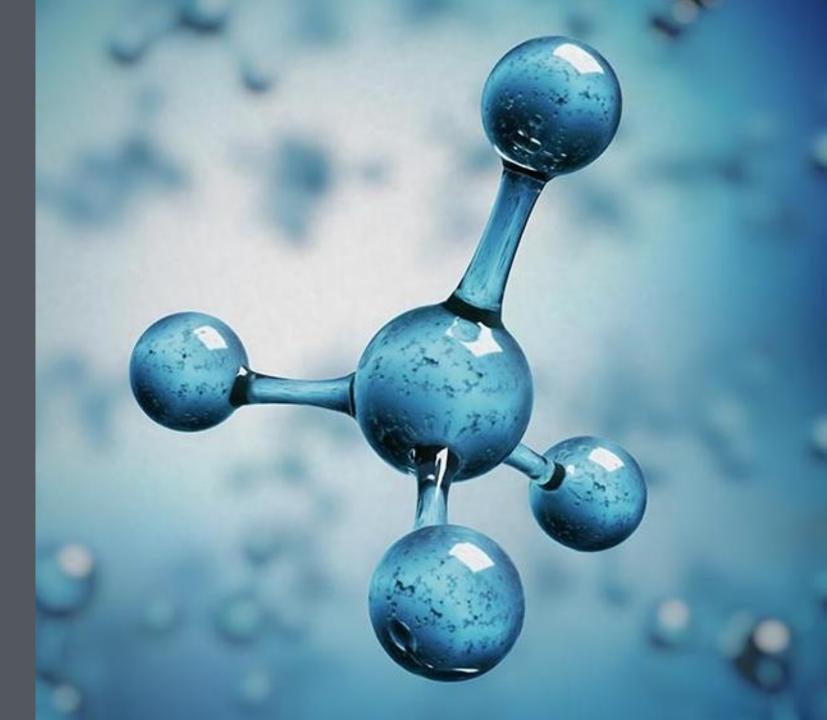
Objectives of the Webinar Series

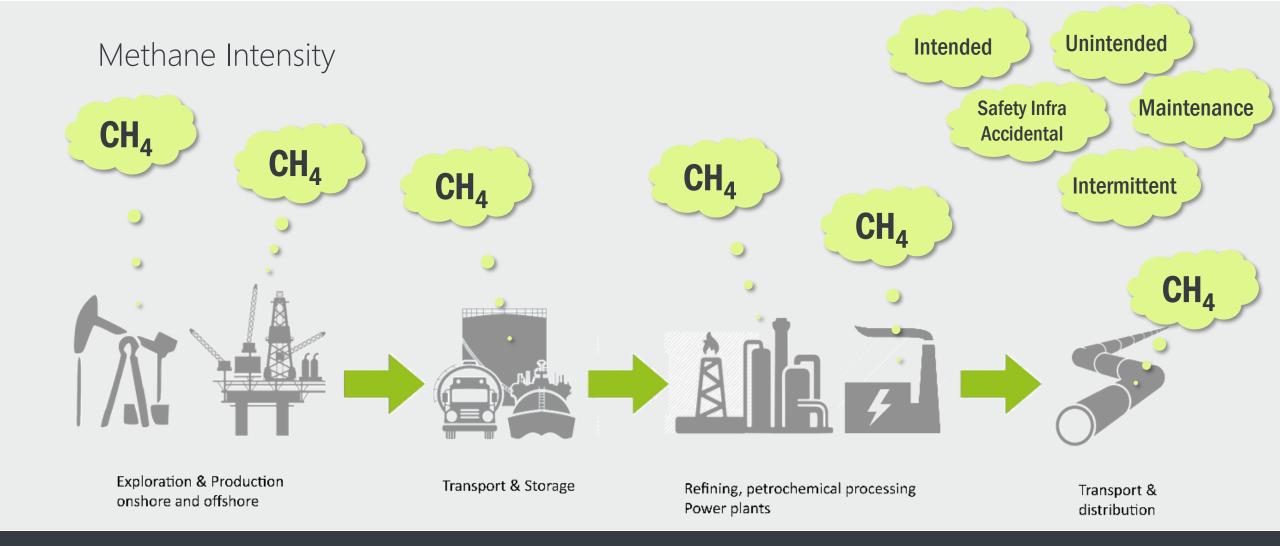
- Cover topics that were on the agenda for the Oil & Gas Subcommittee meeting at the Global Methane Forum 2020
- Bring together policymakers, industry leaders, technical experts, and researchers
- Discuss how to adapt methane mitigation approaches to address current challenges
- Set the stage for the next Global Methane
 Forum

We welcome your feedback!

We encourage you to share suggestions for future webinar topics by emailing us at asg@globalmethane.org

Realizing your Environmental and Sustainability Ambition


Seeing Methane, the Invisible Problem ... Who is Using Which Number


Global Methane Initiative Oil & Gas Subcommittee Webinar 2020 06 23

> Bart Wauterickx CEO The Sniffers

Methane Emissions

How to Reduce?

© 2020 The Sniffers

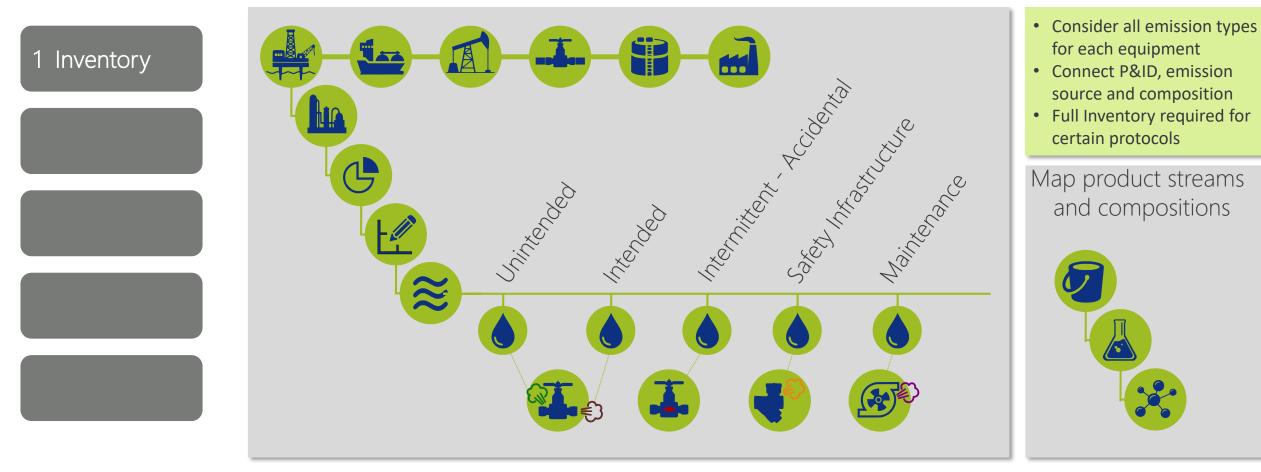
What do we want?

- Understand current emission situation
- Positioning in the market
- Targets: Able to monitor improvements
- Data intelligence
- Reassurence: validation, prognoses...

Emission Data needs to be:

- Complete
- Reliable
- Traceable
- Actionable
- Comparable

How not:



Estimating Modelling Random projects

Customers need reliable transparent emission data

Inventorize E2E value chain with drilldown to source level

Scritical Success Factors for Sustained Methane Reduction

© 2020 The Sniffers 9

Understand Methane ambition and budget of the customer

Repair Threshold ? 1000–10000-100000PPM 50 -500 kg/year

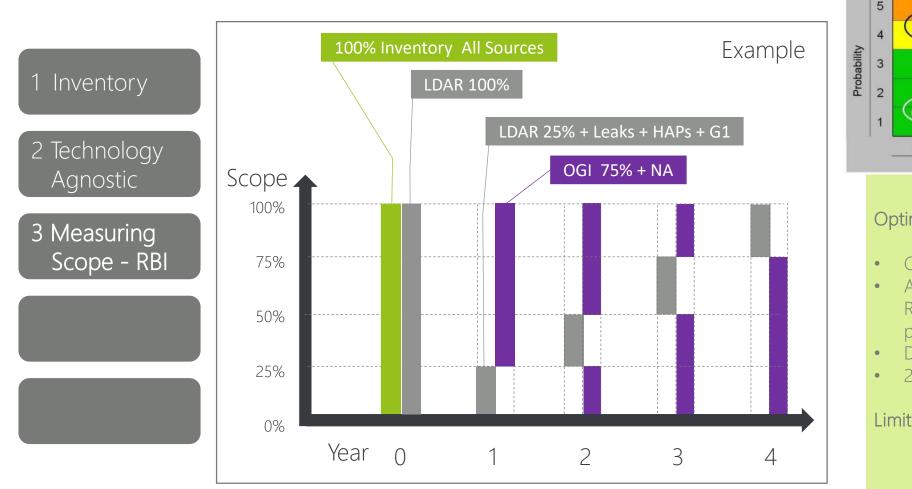
Fit for Purpose Approach: Select correct Measuring Technique and Calculation Protocol

Critical Success Factors for Sustained Methane Reduction

© 2020 The Sniffers | 10

1 Inventory

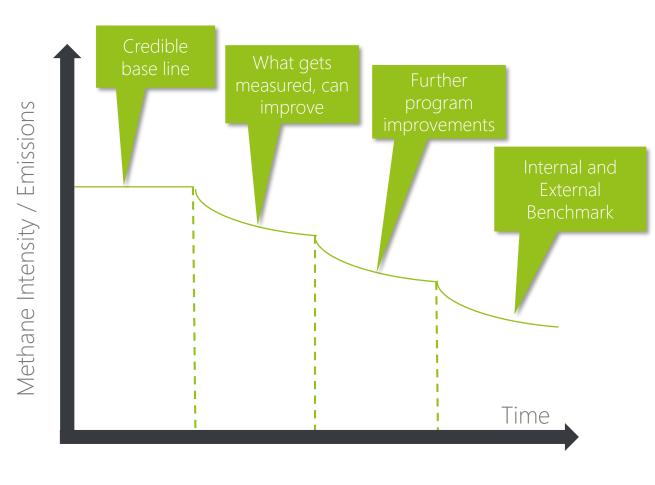
2 Technology Agnostic



© 2020 The Sniffers

- Detect leaks > Repair Threshold
- 25% Scope limit costs and maximize value

Limited Investment for High Quality Program


Critical Success Factors for Sustained Methane Reduction

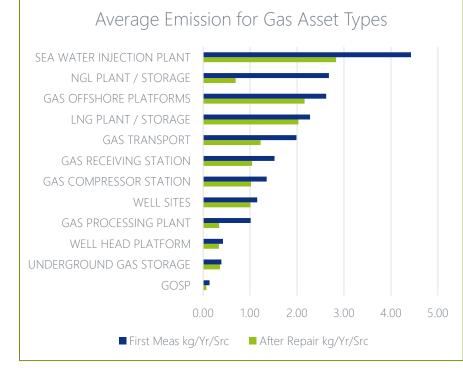
© 2020 The Sniffers 13

Beyond classic repair techniques

Process changes & Investments

Benchmark:

- Reveal Best in Class Techniques
- Identify biggest • improvement opportunities
- Knowledge Sharing
 - Top quartile performance per source type, per function, per ...


Critical Success Factors for Sustained Methane Reduction

© 2020 The Sniffers 14

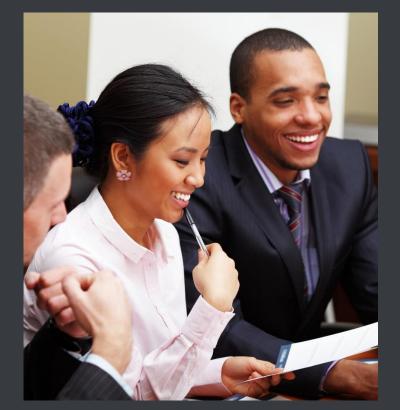
Methane Reduction Results for 400 Campaigns

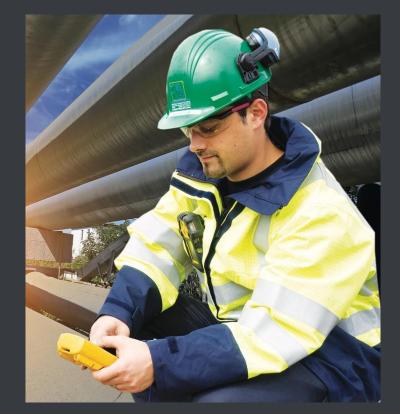
© 2020 The Sniffers | 15

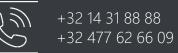
Source Type	Initial Leak Mass per Leaking Source kg/year	After Repair Leak Mass per Leaking Source kg/year
Connection	156	100
Stem Valve	182	113
Flange	104	83
Stem Control Valve	248	189
Open End	547	507
Potential Open-End Connection	273	203
Relief Valve	889	695
Potential Open-End Flange	69	27
Pump Seal	91	76
Compressor seal	246	251
Sample Point	438	394
	181	127

Methane Reduction after Repair Ton/year

Methane Emission Reduction Results in one-year, average figures per Gas Asset type, 400 LDAR campaigns,10mio measurements. From 1,42kg/year/source to 0,92kg/year/source or -35% Average mass leak kg/year for typical source types in Gas Assets, 400 LDAR campaigns. Average improvement: from 181kg/year to 127kg/year for a leak Benchmark Campaign results for 7 gas processing plants. Total 1 400 Ton Methane emission saving per year with a one-year campaign or-70%


Measuring Campaign Results and Insights


- Source based LDAR campaigns provide actionable data for repair and emission reduction
- Select measurement technology and protocol aligned to the repair threshold for methane
- Apply RBI to maximize value and lower cost
- Reliable data allows structural emission reduction.
 Yearly emission improvements of -35% up to -70%
- Benchmarking emission results reveal information for continuous improvement
- Third Party accreditation of service providers delivers a credible report and reliable emission figures



Bart Wauterickx CEO The Sniffers

The Sniffers Poeierstraat 14 2490 Balen, Belgium

Bart.Wauterickx@The-Sniffers.com

Realizing your Environmental and Sustainability Ambition

Quantifying Methane at Different Scales

Aerial & Ground-Based Measurement Technologies to Drive and Track Mitigation

Global Methane Initiative, Oil & Gas Subcommittee Webinar, June 23, 2020

Prof. Matthew R. Johnson and Dr. David R. Tyner

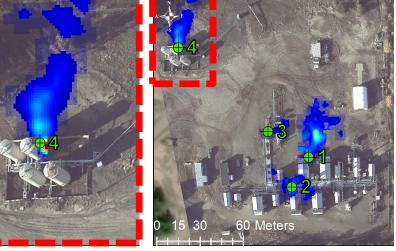
Canada's Capital University

Energy & Emissions Research Lab., Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON

ENERGY AND EMISSIONS RESEARCH I ABORATORY

Quantifying and Mitigating Methane is a Multi-scale Challenge

- Need for better aggregate source quantification
 - Total inventories & tracking aggregate reductions
- Need for site level quantification and monitoring
 - Compliance with regulations
 - Screening for mitigation opportunities
- Need for source-level measurements
 - Source-specific regulations (e.g. compressors)
 - Key challenging sources may drive inventories (e.g. tanks)
 - Eng. design data actual mitigation occurs at sources

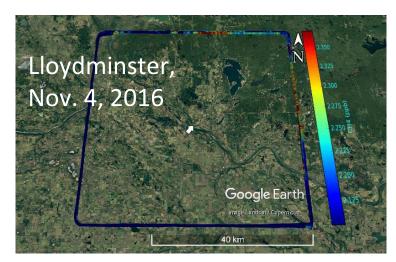


- Alignment of inventories and tracking progress toward reduction targets
 - Requires accurate aggregate measurements across 1000s of sites
 - Challenging or impossible if only some portion of sites can be quantified
 - Critical task given continued significant persistent discrepancies between measurements and inventories (e.g. Hmiel et al., Nature, 2020)
- Sensitivity requirements to assess regulatory compliance
 - ECCC Site-level Venting Limit (Canada): 1250 m³/mo = 1.7 m³/hr \approx 0.001 t/hr
- Component coverage and measurement frequency
 - Many fugitive emissions programs based on screening components @ 1-3×/yr
- Accurate source-specific quantification to enable actual mitigation decisions/design on the ground

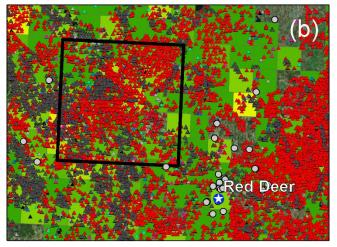
1. Aggregate Top-Down / Bottom-Up Analysis:

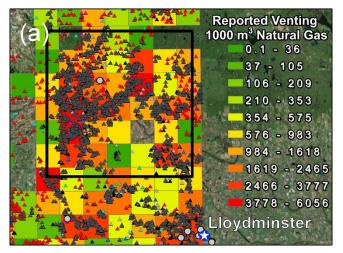
Contrasting Aerial Measurements with Inventories

M.R. Johnson, D.R. Tyner, S. Conley, S. Schwietzke, D. Zavala-Araiza (2017), Environmental Science & Technology, 51(21):13008-13017. (doi: 10.1021/acs.est.7b03525).


Aggregate Site Top-Down Quantification - Flight Plans and Sample Data

- Two contrasting regions
- Multiple flights over several days in Nov. 2016
- Direct comparisons with reported / inventory data

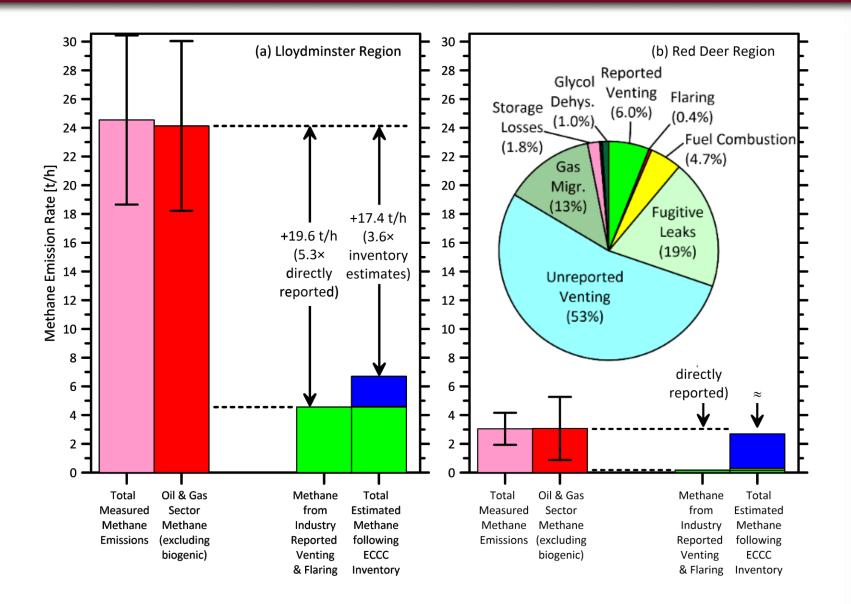




Reported Production Data

NPRI Facilities (Non-Oil and Gas)
 Other Oil and Gas Facilities
 Compressor Station

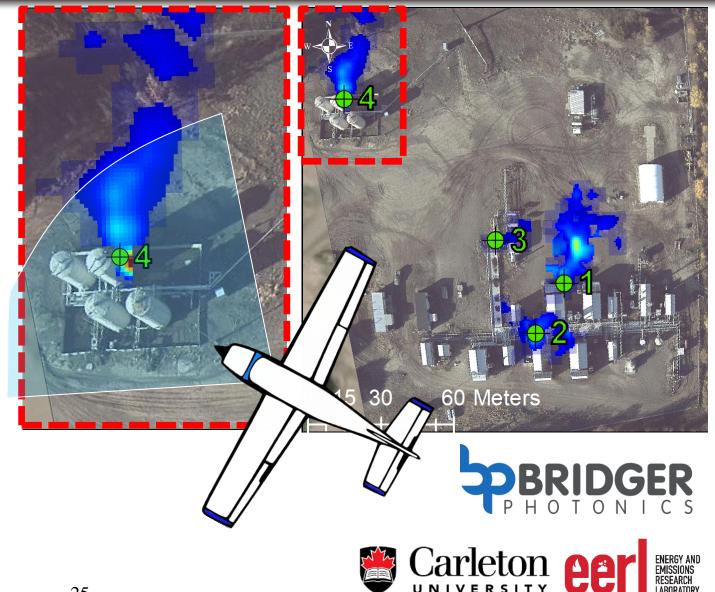
▲ Gas Battery ▲ Gas Gathering System ▲ Gas Well ▲ Oil Battery ▲ Gas Plant ▲ Oil Well



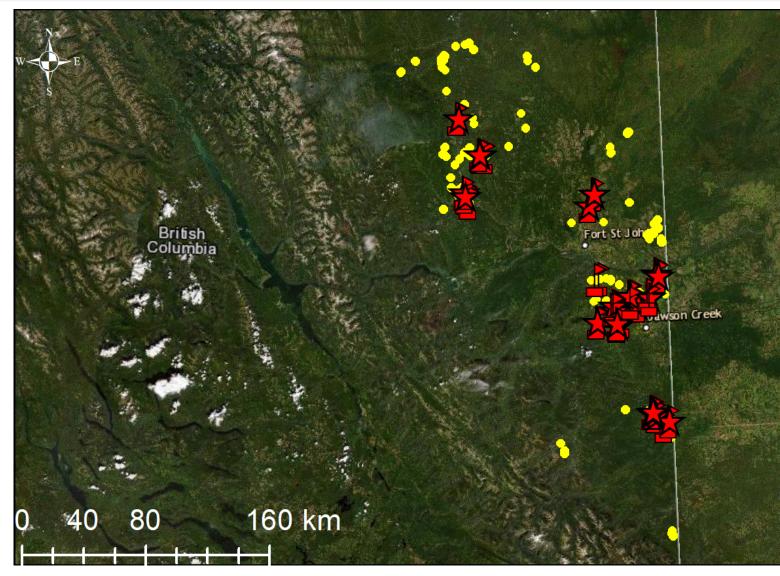
Aggregate Top-Down / Bottom-Up Analysis:

Contrasting Aerial Measurements with Inventories

Implications


- Measurements in Lloydminster (Heavy oil region) 3–5× greater than both reported and inventory estimates
 - Underreported venting at heavy oil production sites
- Measurement in Red Deer match inventory but show that
 ~94% of methane from unreported fugitive sources
- Actual methane emissions from the conventional oil and gas sector at least 25–50% greater than estimated

2. Site-Level Top-Down / Bottom-Up Analysis :


Contrasting Aerial Measurements with Ground Measurements

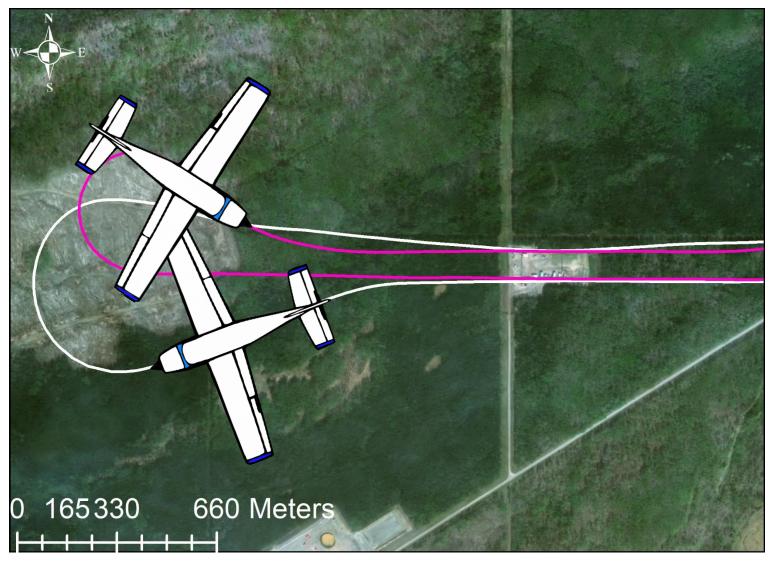
- Novel LiDAR technology (Bridger Photonics)
 - Can measure individual plumes
 - Recent trials in Northern British Columbia
- Lower Sensitivity (~1.2-2.0 kg/hr)
 - Validated by EERL using in-field blinded tracer releases
 - Sufficient to assess some regulatory limits
 - AER "defined vent limit"
 - = 3000 m³/mo \approx 2.5 kg/hr
 - ECCC site vent limit
 - = 1250 m³/mo \approx 1.0 kg/hr

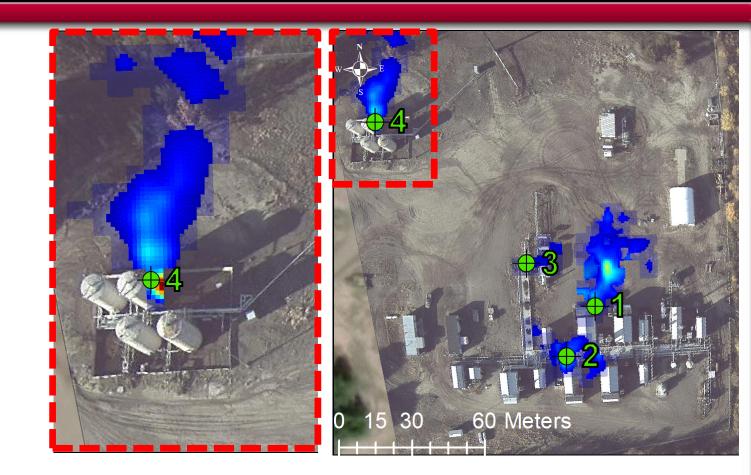
Aerial Methane Measurement Survey September 2019

- Aerial methane measurements
 - Bridger Photonics Ltd. LiDAR technology
- 167 oil and gas site locations (yellow) in Northern BC, Canada
- EERL deployed wind sensors (flag) and tracer releases (star)
- Wide range of infrastructure
 - Isolated wells, single & multiwell batteries, compressor stations, and gas plants

EERL Field measurement support

- Planning + on the ground field measurement support
 - Deployed wind sensors and *blinded* controlled releases
 - Enabled assessment of detection limits, quantification uncertainty, probability of detection
- Data analytics to interpret field measurement results
 - Comprehensive data processing to identify and quantify sources from multi-pass flight data
 - Comparisons with ground survey data




Aerial Methane Measurement Survey Overview

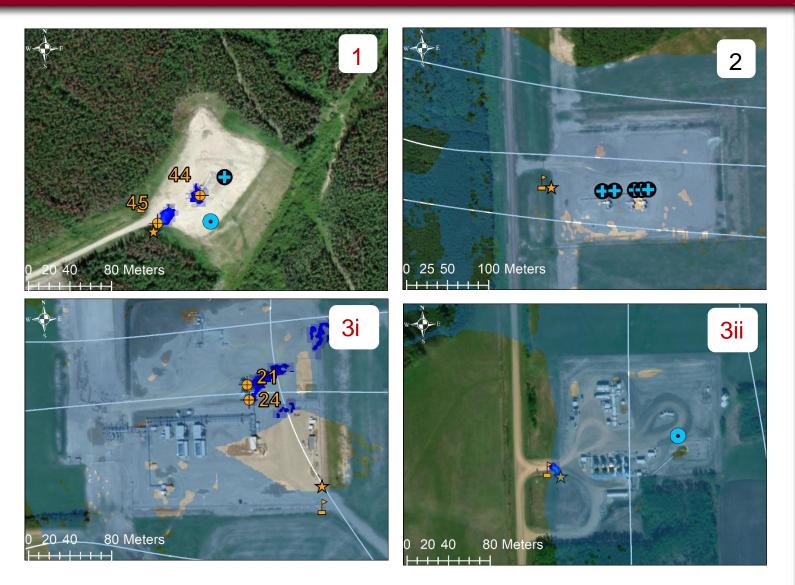
- Sites have one or more passes on first flight
 - LiDAR system scans site for methane emissions
 - Camera provides high resolution site imagery
- Sites with detected emissions had Reflights
- Quantified emission geolocated on each pass

Aerial Methane Measurement Technology Overview

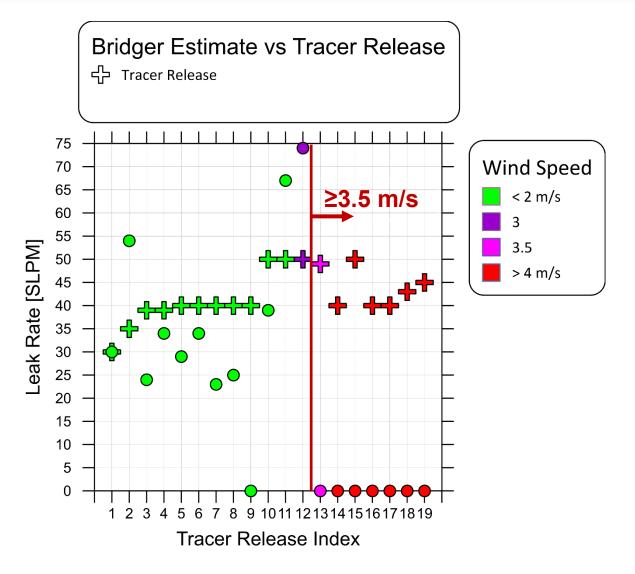
- Assembled plume and quantified emission data provide a site level methane assessment
- Advances mitigation
 - Pin-points and quantifies emissions from sources (e.g. tanks, unlit flares) that are not quantifiable with current OGI
- Improves methane inventories
 - Large scale direct repeated measurement of oil and gas sites at less than half the cost of OGI
- Enables quantification of regulatory impacts

Deployment of (Mobile) Wind Sensors and Tracer Releases

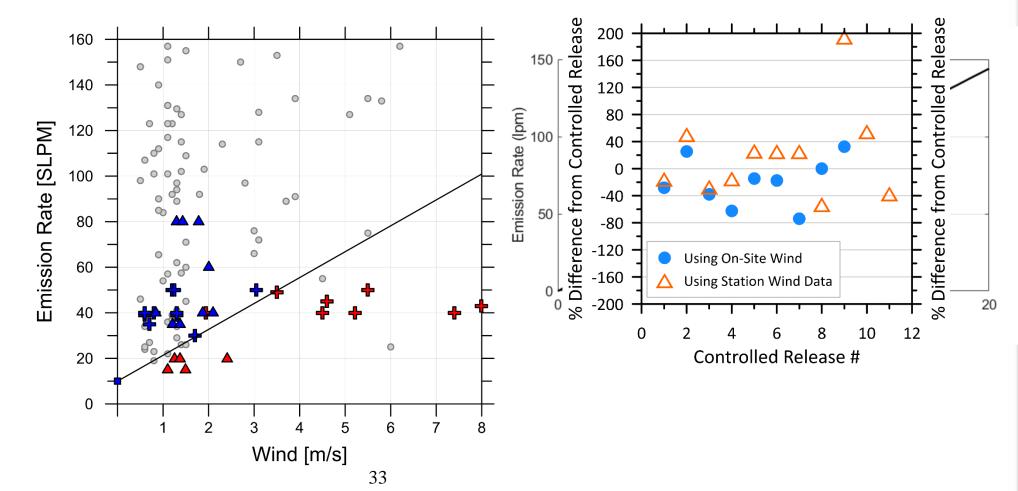
- Team of 8 (5 trucks) deployed Sept 16-20th
- Visited 48 unique sites over 5 flight areas
 - 65 wind measurements
 - 29 blinded tracer releases



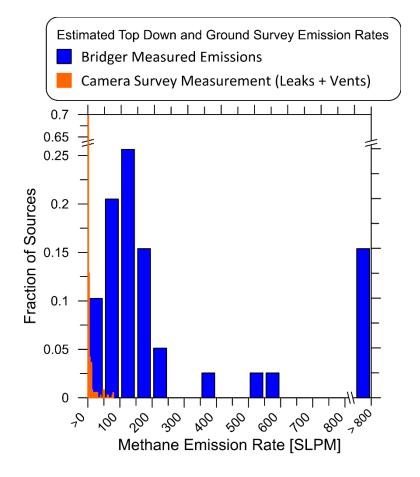
Tracer Release Data: Detects, Zero Detects, and Misses

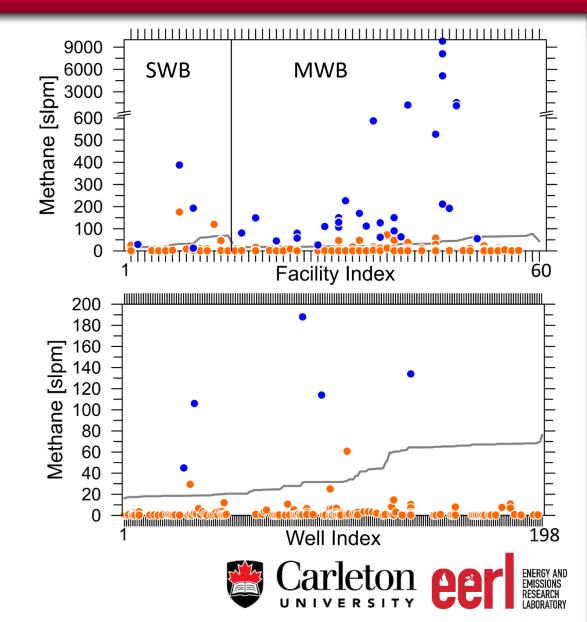

1. Detects

- Bridger finds tracer release
- 2. Zero Detects
 - Release in laser swath but not detected
- 3. Misses/other:
 - i. Release not in laser swath
 - ii. Release seen but not quantified
 - iii. Tracer plume not separable from other emissions


Bridger Tracer Release Estimates

- 29 Tracer Releases
- 11 Bridger Detects
- 8 Bridger Zero Detects
- 10 misses/other
 - 3 mixed with other sources
 - 2 detected but not quantified by Bridger
 - 4 on edge of laser scan
 - 1 due to data loss
- Detection sensitive to wind speed


Preliminary Bridger Sensitivity for BC Measurements

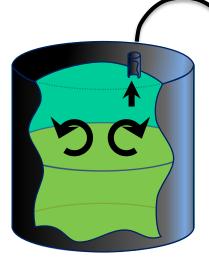

- Carleton Tracer Data combined with Bridger Data (presented at MERF, 2018)
- Lower Detection limit (slpm) ≈ 11.4 × Wind (m/s) + 10

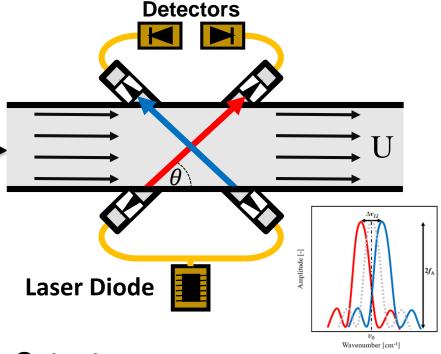
Different Scale of Detected Sources than OGI Camera Surveys

 Comparison of detected sources with OGI camera survey data from one year prior at the same sites

35

3. Equipment-Level Quantification of Key Sources (Tanks and Vents)


- Field measurements continue to implicate certain key sources:
 - Casing gas vents (especially intentional venting as in heavy oil production)
 - Storage tanks
- Both sources are difficult to quantify

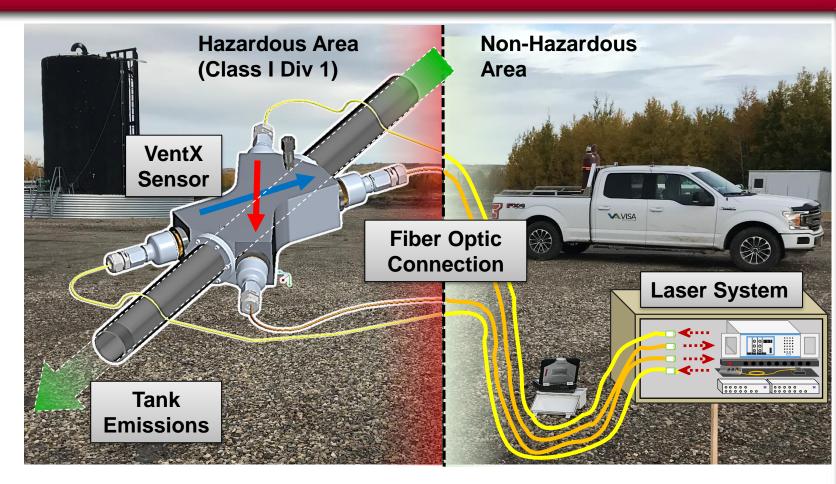

Key issue in methane emissions management

- Tanks can often be the exit point for emissions from malfunctioning equipment
- Lyon et al., EST, 2016:
 - Helicopter IR camera survey of 8220 sites
 - 90% of observed emissions from tanks
- Roscolli et al., JAWA, 2018
 - Dual tracer measurements at a cold heavy oil production site
 - 77% of methane from Casing vent / 23% from tank

VentX – Direct Optical Quantification of Methane FLUX

Vent Source such as a Casing Gas Vent or Storage Tank

Outputs:


- Methane Emissions (e.g. kg/s or m³/s);
- Methane concentration (%)
- Flow velocity (m/s), Temperature, and Pressure
- Total vent volume flow rate (m³/s)

- Methane-selective measurement of concentration + velocity
- DIRECT OPTICAL
 MEASUREMENT OF
 METHANE <u>FLUX</u> !
- VentX measurement head deployable in Zone 0/1

VentX Optical Methane Flux Measurement Technology

- Real-time monitoring and quantification of tank methane emissions
 - Intrinsically safe optical measurement of methane flux
- Technology development enabled by Natural Resources Canada (NRCan)
 - Clean Growth Program in partnership with INO and Husky Energy Ltd
- Field testing Summer 2020

Husky Energy

- Methane quantification and mitigation is a multi-scale problem
 - Aggregate measurements vital for tracking reductions and informing policy
 - Site-level measurements needed to monitor compliance with regulations and screen for mitigation opportunities
 - Key components (e.g. tanks and casing vents) must be measured to drive actual onthe-ground mitigation actions
- New technologies are making all of these goals possible
 - Critical that uncertainties and sensitivities are openly and objectively addressed
 - Sensitivities must align with regulatory limits to be most useful
- Proving equivalency of methods remains as an evolving and critical research challenge

Selected References

- M.R. Johnson, D.R. Tyner (2020) A case study in competing methane regulations: Will Canada's and Alberta's contrasting regulations achieve equivalent reductions? *Elementa: Science of the Anthropocene*, 8(1), p.7. (doi: <u>10.1525/elementa.403</u>)
- T.A. Fox, A.P. Ravikumar, C.H. Hugenholtz, D. Zimmerle, T.E. Barchyn, M.R. Johnson, D. Lyon, T. Taylor (2019) A methane emissions reduction equivalence framework for alternative leak detection and repair programs, *Elementa: Science of the Anthropocene*, 7(1), p.30 (doi: <u>10.1525/elementa.369</u>)
- C.A. Brereton, L.J. Campbell, M.R. Johnson* (2019) Computationally Efficient Quantification of Unknown Fugitive Emissions Sources, Atmospheric Environment, 3(100035):1-13 (doi: <u>10.1016/j.aeaoa.2019.100035</u>)
- D.R. Tyner, M.R. Johnson* (2018), A Techno-Economic Analysis of Methane Mitigation Potential from Reported Venting at Oil Production Sites in Alberta, *Environmental Science & Technology*, 52(21):12877-12885 (doi: <u>10.1021/acs.est.8b01345</u>)
- D. Zavala-Araiza*, S.C. Herndon, J.R. Roscioli, T.I. Yacovitch, M.R. Johnson, D.R. Tyner, M. Omara, B. Knighton (2018) Methane emissions from oil and gas production sites in Alberta, Canada, Elementa: Science of the Anthropocene, 6(1):27 (doi: <u>10.1525/elementa.284</u>)
- R. Roscioli*, S.C. Herndon, T.I. Yacovitch, W.B. Knighton, D. Zavala-Araiza, M.R. Johnson, D.R. Tyner (2018) Characterization of Methane Emissions from Five Cold Heavy Oil Production with Sands (CHOPS) Facilities, Journal of the Air & Waste Management Association, in press (doi: <u>10.1080/10962247.2018.1436096</u>).
- C.A. Brereton, I.M. Joynes, L.J. Campbell, M.R. Johnson* (2018), Fugitive Emission Source Characterization Using a Gradient-Based Optimization Scheme and Scalar Transport Adjoint, Atmospheric Environment, 181:106-116 (doi: <u>10.1016/j.atmosenv.2018.02.014</u>)

Selected References

- M.R. Johnson, D.R. Tyner, S. Conley, S. Schwietzke, D. Zavala-Araiza (2017) Comparisons of Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and Gas Sector, *Environmental Science & Technology*, 51(21):13008-13017. (doi: <u>10.1021/acs.est.7b03525</u>)
- M.R. Johnson, B.M. Crosland, J.D. McEwen, D.B. Hager, J.R. Armitage, M. Karimi-Golpayegani, D.J. Picard (2016) Estimating Fugitive Methane Emissions from Oil Sands Mining Using Extractive Core Samples, *Atmospheric Environment*, 144:111-123. (doi: <u>10.1016/j.atmosenv.2016.08.073</u>)
- D.R. Tyner, M.R. Johnson (2014) Emission Factors for Hydraulically Fractured Gas Wells Derived Using Well- and Battery-level Reported Data for Alberta, Canada, *Environmental Science & Technology*, 48(24):14772-14781. (doi: <u>10.1021/es502815b</u>)
- M.R. Johnson, A.R. Coderre (2012) Opportunities for CO₂ Equivalent Emissions Reductions via Flare and Vent Mitigation: A Case Study for Alberta, Canada, International Journal of Greenhouse Gas Control, 8:121-131. (doi: <u>10.1016/j.ijggc.2012.02.004</u>)
- C.A. Brereton, M.R. Johnson (2012) Identifying Sources of Fugitive Emissions in Industrial Facilities using Trajectory Statistical Methods, Atmospheric Environment, 51:46-55. (doi:<u>10.1016/j.atmosenv.2012.01.057</u>)
- M.R. Johnson, A.R. Coderre (2012) Opportunities for CO₂ Equivalent Emissions Reductions via Flare and Vent Mitigation: A Case Study for Alberta, Canada, International Journal of Greenhouse Gas Control, 8:121-131. (doi: <u>10.1016/j.ijggc.2012.02.004</u>)
- C.A. Brereton, M.R. Johnson (2012) Identifying Sources of Fugitive Emissions in Industrial Facilities using Trajectory Statistical Methods, Atmospheric Environment, 51:46-55. (doi:<u>10.1016/j.atmosenv.2012.01.057</u>)

Question and Answer

Mute your microphone.

Help!

- Everyone should set the microphone to mute unless actively speaking.
- If participating by phone, press *6 to mute your phone.

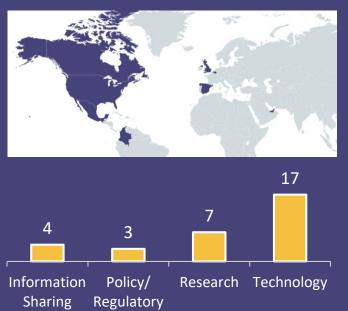
Need Help? If you need help, please send an email to asg@globalmethane.org

GMI Secretariat News and Updates

- Executive Task Force: In response to postponing the Global Methane Forum 2020, the Secretariat created the Executive Task Force to:
 - Facilitate discussion and decision-making
 - Engage a broader cross-section of the GMI community beyond Steering Committee members
 - Gather information and make recommendations to the Steering Committee
- 2020 Priorities:
 - Conduct webinar series for the Oil & Gas, Coal, and Biogas Subcommittees
 - Strengthen relationships with Partner organizations
 - Promote new tools and resources
 - Spotlight successful methane mitigation stories

Discussion Topics:

- GMI's Strategic Partners: How to Complement and Leverage Action
- The Global Methane Challenge
- Proposal for United Nations International Year of Methane
- Future of GMI

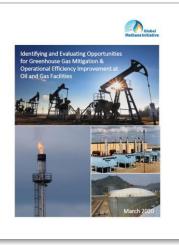

GMI Secretariat News and Updates

70 Stories from 23 Countries

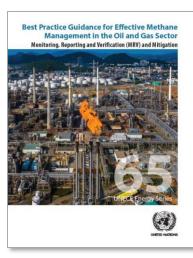
-- including --

31 Oil & Gas Stories

Global Methane CHALLENGE


- The Global Methane Challenge is still open!
- Launched in 2019 to raise awareness and catalyze ambitious action to reduce methane emissions

Submit your story at globalmethane.org/challenge/



GMI Oil & Gas Subcommittee News and Updates

GMI Identifying and Evaluating Opportunities for Greenhouse Gas Mitigation & Operational Efficiency Improvement at Oil and Gas Facilities

Available in English, Spanish, & Russian; French will be available soon

UNECE

Best Practice Guidance for Effective Methane Management in the Oil and Gas Sector: Monitoring, Reporting and Verification (MRV) and Mitigation

Wrap Up

Today's presentation will be posted on the GMI event page

Plans are underway for the next webinar, tentatively scheduled for late July or early August:

Drivers to Methane Mitigation, Focus on Policy

We welcome your feedback! We encourage you to share suggestions for future webinar topics by emailing us at asg@globalmethane.org

- Seeing Methane, the Invisible Problem ...Who is Using Which Number?
 - Drivers to Methane Mitigation, Focus on Policy
- Case Studies: Successful Emission Reduction Projects
- Global Carbon Offset Programs in the Oil & Gas Sector

Thank you for participating today

See you at the next webinar!